19/04/20 00:55:27.11 I2HBMQzQ.net
>>270
まず、無条件に
> ケース1 「 ●○ 」 箱の左側で●○が観測される確率4分の1
> ケース2 「 ●○」 箱の右側で●○が観測される確率4分の1
> ケース3 「● ○」 箱の左右で●○が観測される確率4分の1
> ケース4 「○ ●」 箱の左右で○●が観測される確率4分の1
の各事象、
> ケース1「●● 」 箱の左側で●●が観測される確率3分の1
> ケース2「 ●●」 箱の右側で●●が観測される確率3分の1
> ケース3「● ●」 箱の左右で●●が観測される確率3分の1
の各事象が同様に確からしいとはならないだろう
それぞれのケース1、2が等確率、前者のケース3、4が等確率になるのは、対称と仮定すればでいいとして、
前者の1、2と3、4
後者の1、2と3
の確率がどうなるかは仮定次第
後者のケースが3通りしかないからと言って、無条件に各確率が1/3にはならない
> ようするに物理の説明では
> ケースの場合は {x 、 x}={x} で
> ●の場合は {x 、 x}≠{x} としてる
「ケースの場合」、「●の場合」やこの式が何を意味するのかが分からないが、
何を同様に確からしいと仮定するか次第で、1/3でも1/4でもそれ以外にでもなるとしか言えないんじゃないの