19/04/09 10:20:34.14 fr3gP2yM.net
>>213
a=lim(x→1-)f(x)∈R が存在するとする。
f(x)=Σ[n=0~∞]x^{4^n}(1-x^{4^n}) なので、0<x<1とm≧1を任意に取るとき、
f(x^{1/4^m})
=Σ[n=0~∞]x^{4^{n-m}}(1-x^{4^{n-m}})
=Σ[n=-m~∞]x^{4^n}(1-x^{4^n})
となる。m→+∞とすると、x^{1/4^m}↑1 なので、
a=Σ[n=-∞~∞]x^{4^n}(1-x^{4^n})
となる。これが任意の0<x<1で言えることになる。