19/03/27 01:22:35.54 RCQB5eMI.net
>>127
問題の趣旨に添う回答じゃないかもだけど一応。自然数 n に対して
a = 4n^4+8n^3-4n-1 = (2n^2-1)(2n^2+4n+1),
b = 8n^3+12n^2+4n = 4n(n+1)(2n+1),
c = 4n^4+8n^3+8n^2+4n+1 = (2n^2+2n+1)^2,
d = 8n^3+12n^2+8n+2 = 2(2n+1)(2n^2+2n+1)
と定めて α=(a+bi)/c とおけば、|α|=1, |1-α|=d/c と有理数になってくれるから、
うまいこと自然数 m を定めて複素平面上の点集合 {a^n}_(n=-m,…,m) を順に結べば周長以外の条件を全て満たす。
点集合を順に結んで(α^m と α^(-m) も結んで)凸多角形ができるために m が満たすべき条件はというと、
α^1 から α^m までが全て上半平面にあることのみ。(このため m の大きさはだいたい πn/2 程度に制限される)
n を十分大きくとればそれだけ辺が円に近づくから、周長が 31/5(<π) を超えるように n をとることは可能。
…そして実際にとれれば解決なんだけど、計算が煩雑になるため計算機に頼るしかないのが難点。一応理論だけ以上の通り