18/12/17 23:24:16.77 vPN/J1lJ.net
>>104
つづき
代数
・グロタンディーク構成: 発端は、K-理論において位相空間上のベクトル束の圏が直和の下で可換モノイド構造を持つことである。各ベクトル束(の同値類)に加法逆元を形式的に追加することにより、このモノイドをグロタンディーク群と呼ばれるアーベル群にすることができる。同じことだが、各群を(逆元の存在を忘れることにより)その台となるモノイドへ写す函手は左随伴を持つ。
このようなグロタンディーク構成は、自然数からの負の整数の構成をなぞるようにすることもできるし、存在定理として使うこともある。有限項演算の代数構造の場合に対しては、そのような構成の存在性は普遍代数学やモデル理論に言及することもできるし、圏論的に適当な形での証明としても自然に述べられる。
・群の表現論におけるフロベニウス相互律によれば、表現の誘導は表現の制限の左随伴である。
位相
・層の順像と逆像。全ての連続写像f : X → YはX上の層(集合の層、アーベル群の層、環の層など)からYの対応する層への関手f *を誘導し、順像関手と呼ばれる。さらに、Y上のアーベル群の層からX上のアーベル群の層への関手 f ?1 も誘導され、逆像関手と呼ばれる。f ?1 は f * の左随伴である。ここで微妙な点は連接層での左随伴は(集合の)層のそれとは異なっていることである。
(引用終り)