暇つぶし2chat MATH
- 暇つぶし2ch326:{100} からなる有限集合とする。 すると、Sの濃度は card(S)=100 となる。E'をSの有限なσ-集合体とする。card(E')=2^{100} とする。 任意の card(S')=100 なる 有限集合S'とSとの間には全単射が存在するから、 各 k=1,…,100 に対して a_k を I=(0,1] の部分区間として、k=1 のときは a_1=(0,1/100]、 各 k=2,…,99 に対しては a_k=( (k-1)/100,k/100 ]、k=100 のときは a_{100}=(99/100,1] と見なせる。このとき、Sの100個の箱の中の代表元の実数 a_1,…,a_{100} は どの2つも互いに素なIの100個の部分区間からなる集合になるから、∪_{ i=1,…, }(a_i)=I となる。 ここに、各 i=1,2,…,100 に対して a_i⊂I である。有限集合Sのσ-集合体E'の濃度は card(E')=2^{100} としている。 区間 I=(0,1] のルベーグ測度は1である。そこで、EをIのσ-集合体とする。ここに、区間Iの濃度は連続体濃度cに等しいから、card(E)=2^c。 そうすると、零集合のときと同様に可測空間 (I,E) が構成されて、card(E')<card(E) になる。いわゆるSのσ-集合体E'をIのσ-集合体Eで覆うことになる。




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch