暇つぶし2chat MATH
- 暇つぶし2ch257:132人目の素数さん
18/12/02 16:08:46.16 kWLWeLnH.net
おっちゃんです。
空間Sが有限集合でも、零集合Sはルベーグ測度について可測空間だから、
EをSの有限なσ-集合体、μをEにおいて定義されたルベーグ測度として、
1):任意の集合 X∈E に対して 0≦μ(X)≦1 (ここに、X⊂S)、
2):μ(E)=1、
3):Nを N≧2 なるEの濃度として、各 i=1,2,…,N に対して E_i∈E とする。
任意の 1≦i<j≦N なる正整数i、jに対して E_i と E_j は互いに素とする。
このとき集合列 {E_n} は存在することになり、μ( ∪_{ i=1,…,N }(E_i) )=Σ_{ i=1,…,N }μ(E_i)、とする。
上の1)、2)、3)を前提として公理化すれば、時枝



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch