18/12/02 10:42:11.69 hw+09Iif.net
>>25>>57>>111をご参照
まあ、これを理解するには、関数の芽の同値類を勉強してもらうしかない(東大の数学科3年レベル)
(関数を正則関数に限れば数当ては可能だが、微分可能関数では数当てはできない。時枝はもっと一般の関数だから、当然数当てはできない)
この反例を通じて、なぜ当たるように見えて当たらないかが、わかるだろう
2.Sergiu Hart氏のPDFのgame2は、関数の芽の同値類モデルより、決定番号の分布が裾の重い分布になることを理解するのが良いだろう
下記の例よりも、もっと裾が重い分布になる。期待値が存在しない分布だ。それが、当たるように見えて当たらない理油
(この話は、過去スレにも書いた)
URLリンク(ja.wikipedia.org)
裾の重い分布
URLリンク(mathtrain.jp)
コーシー分布とその期待値などについて 最終更新:2015/11/06
期待値が存在しない分布,裾が重い分布の代表です。
3.Sergiu Hart氏のPDFのgame1(=時枝記事の数当て)、game2とも数学として不成立
それは、Sergiu Hart氏が、彼のPDF P2 の最後 Remark で、ほのめかしていること
彼のPDF P2 の最後 Remarkで、有限長の数列では、この解法は成立しないのだと
4.game1(=時枝記事の数当て)、game2とも数学として成立していないことは、
大学3-4年で、確率過程論を学べば、そこで可算無限個の確率変数を扱うので、即座に「当たらないこと」が分る
また、Hart氏のPDF P2 の最後 Remarkの有限長の極限(長さを無限大にする)を考えても、「当たらないこと」が理解できる
しかし、「なぜ当たらないのに、当たるように見えるのか?」
ここを、さらに掘り下げたのが、上記の1と2だ
5.可算無限長に、同値類の代表と問題の元(数列)との比較と、これにより定まる決定番号の大小比較から導かれる確率1-ε
ここらの組み合わせで、「当たらないのに、当たるように見せている」手品のトリックがある
以上