18/12/02 08:05:51.84 hw+09Iif.net
>>196-197
違うな
1.Sergiu Hart氏のPDF November 4, 2013 (URLリンク(www.ma.huji.ac.il) )
ここでのgame1が時枝記事の数当てに相当し、この場合選択公理を使っている
game2が、選択公理を使わないバージョンだ
2.両者に共通しているのは、可算無限長の数列のシッポの同値類と、代表と、同じ同値類内のある元(=可算無限長の数列)で
代表と同じ同値類内のある元との比較をして、数列のシッポの先が一致する決定番号(決定番号から先が二つの数列が一致する)
それと、複数列における決定番号の最大値との比較で、2列で1/2、100列で99/100(Hart氏のPDFでは、1-εと表現)という確率を、導くこと
3.Sergiu Hart氏のPDFには、
”P2 の最後 “Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing the xi independently and uniformly on [0, 1] and {0, 1, ・・・, 9}, respectively.”とある
つまり、意訳すると
“リマーク:箱の数が有限の場合、プレーヤー1は勝利を保証することができます。
[0、1]と{0、1、・・・、9}上で*)、xiを独立で一様に選択することによって、game1の勝利確率1とgame2の勝利確率9/10になる。”と
言い換えると、プレーヤー2の立場では、game1の勝利確率0とgame2の勝利確率1/10になる。
注*)、[0、1]はこの区間の任意の実数を、{0、1、・・・、9}は0~9までの整数を、箱に入れるということ。
(引用終り)
(スレ47 スレリンク(math板:41番) より)
とあって、有限長の数列では、Sergiu Hart氏の方法(時枝記事含む)は、不成立が明記されている
4.なので、Sergiu Hart氏のPDF によって説明すれば、
1)数列は可算無限長、2)数列のシッポの同値類、3)代表と同じ同値類の元との比較から定まる決定番号、4)複数列の最大値との比較から導かれる確率1-ε
この4つの要素から成り立っているってことだ
”選択公理や非可測集合を経由した”は、本質ではないってこと
5.そして、game1とgame2とも、その”複数列の最大値との比較から導かれる確率1-ε”は不成立というのが、私の主張だ
以上