暇つぶし2chat MATH
- 暇つぶし2ch179:現代数学の系譜 雑談 古典ガロア理論も読む
18/12/01 20:36:48.44 7lZuHhq/.net
>>160
つづき
4)
URLリンク(ja.wikipedia.org)
(抜粋)
選択公理(せんたくこうり、英: axiom of choice、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた[1]。
選択公理と等価な命題
以下の命題は全て選択公理と同値である。つまり、以下の命題のいずれかを仮定すると選択公理を証明することができるし、逆に選択公理を仮定すると以下の命題が全て証明できる。
整列可能定理
任意の集合は整列可能である。
ツォルンの補題
順序集合において、任意の全順序部分集合が有界ならば、極大元が存在する。(実際の数学では、この形で選択公理が使われることも多い。)
URLリンク(ja.wikipedia.org)
(抜粋)
クラトフスキは1922年に[1]現在の定式化に近い形で証明した(包含関係により順序付いた集合と整列した鎖の和集合の場合)。現在のものと本質的に同等の定式化(整列ではなく任意の鎖に弱めた場合)はツォルンにより独立に1935年に与えられた[2]。彼は整列可能定理に代わる集合論の公理として提案し、代数におけるいくつかの応用を行って見せた。(引用終り))
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch