暇つぶし2chat MATH
- 暇つぶし2ch178:[3] Most mathematicians however find it difficult to visualize a well-ordering of, for example, the set R of real numbers. In 1904, Gyula K?nig claimed to have proven that such a well-ordering cannot exist. A few weeks later, Felix Hausdorff found a mistake in the proof.[4] It turned out, though, that the well-ordering theorem is equivalent to the axiom of choice, in the sense that either one together with the Zermelo?Fraenkel axioms is sufficient to prove the other, in first order logic (the same applies to Zorn's Lemma). In second order logic, however, the well-ordering theorem is strictly stronger than the axiom of choice: from the well-ordering theorem one may deduce the axiom of choice, but from the axiom of choice one cannot deduce the well-ordering theorem.[5] Notes 3. Georg Cantor (1883), “Ueber unendliche, lineare Punktmannichfaltigkeiten”, Mathematische Annalen 21, pp. 545?591. (引用終り) つづく




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch