暇つぶし2chat MATH
- 暇つぶし2ch14:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/27 21:02:06.30 Oqu1XNS+.net
さて、前スレ54で議論していたのが、下記の定理1.7と関連の系1.8だ
(スレ53で一段落ですが)
定理1.7 (スレ26のNo.422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }
と置く: もしR-Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
証明
このとき, 補題1.5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である.
系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.
証明
定理1.7 が使えて, f はある開区間(a, b) の上でリプシッツ連続である.
一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛盾. よって, 題意が成り立つ.
(引用終り)
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch