現代数学の系譜 工学物理雑談 古典ガロア理論も読む54at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む54 - 暇つぶし2ch643:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/19 07:15:11.32 U7RCFfEq.net
>>584
つづき
滑らかな関数の層
対照的に,滑らかな多様体上の滑らかな関数の層に対しては,芽は局所的な情報を含んではいるが,任意の開近傍上の関数を再構成するには十分ではない.例えば,f: R → R を原点のある近傍で恒等的に 1 で原点から遠く離れたところでは恒等的に 0 である隆起関数とする.
原点を含む任意の十分小さい近傍上 f は恒等的に 1 なので,原点において,値が 1 の定数関数と同じ芽を持つ.f をその芽から再構成したいとしよう.
f が隆起関数であると前もって知っていたとしてさえ,芽はその隆起がどのくらい大きいかを教えてくれない.芽が教えてくれることからは,隆起は無限に広くてもよい,つまり,f は値 1 の定数関数に等しいかもしれない.
原点を含む小さい開近傍 U 上で f を再構成することさえできない,なぜならば f の隆起が U におさまっているかどうかとか隆起が大きくて f が U 上恒等的に 1 であるかどうかは分からないからである.
一方で,滑らかな関数の芽は値 1 の定数関数と関数 1+e^{-1/x^{2}}を区別することはできる,なぜならば後者の関数は原点のどんな近傍においても恒等的に 1 ではないからである.この例は芽は関数の冪級数展開よりも多くの情報を含んでいることを示している,
なぜならば 1+e^{-1/x^{2}} の冪級数は恒等的に 1 だからである.(この追加の情報は原点における滑らかな関数の層の茎はネーター環ではないことと関係している.クルルの交叉定理によりこれはネーター環に対しては起こりえない.)
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch