暇つぶし2chat MATH
- 暇つぶし2ch611:閧ワせん.1 しかし, 彼の爆発的な研究はただの神業ではなく, 上のような類似のイメージが根底にあったことによるのかもしれません. 4 おわりに いかがでしたでしょうか. この類似を通して眺めてみれば, それまではとてつもない道具のように見えたtopos だったり, Kan 拡張だったりというものもなんだか身近なものに見えてくるのではないでしょうか. Mac Lane は「すべての概念はKan 拡張である」と述べましたが, Kan 拡張がすべての概念であるかはさておき, 少なくとも集合論でいう「順像」にあたる息を吐くように使うような操作である事は伝わったと思いますし, それを駆使せずに圏論をするという事がどれくらい議論を(非本質的に) 複雑にしているかというのも分かると思います. また, topos 理論というのも圏論版の「位相空間論」だというのが分かったと思います. topos 理論について私が注意しておきたいのは次の2 点です. 多くの人は「エタールコホモロジー」などの応用的な側面を主な関心の対象としているようですが,本命として認識されるべきものは「topos 理論」という理論の方であり, 理論と比較すると, コホモロジーは理論が如何に深いところまで掘り下げているものであるかを示す単なる「一つの指標」に過ぎません. 「集合と位相」が数学科の基礎課程であるように, 私は「圏とtopos」も基礎課程に入るべきものである と思います. 少なくとも, 大学院生でないととても扱えないような大層なものであるとは到底思えません. こ れは数学全般にいえる事だと思いますが, 一番の敵は「圏論は難しい」という思い込みだと思います. この 類似によって, その思い込みを破壊し, 少しでも皆さんにとって圏論が馴染み深いものに見えたらな, と思います. (引用終り)
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch