暇つぶし2chat MATH
- 暇つぶし2ch576:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/17 07:58:16.20 JAx0r27M.net
>>517
つづき

[注 1]^ なぜならば、写像 f: F2 → F2; X → X2 + X は、f(0) = 0, f(1) = 1 + 1 = 0 であるため。
(引用終り)
URLリンク(kotobank.jp)
(抜粋)
ブリタニカ国際大百科事典 小項目事典の解説
不定元
ふていげん
indeterminate
多項式 f(X)=a0+a1X+・・・+anXn というのは,本来は無内容な「記号」で,変数とは考えない。
X に数 x を代入することで関数 f(x) が考えられるとする。この X を不定元という。
高校数学では,f(x) と f(X) を混用しており,普通の多項式を扱う場合はそれほど区別する必要はない。
しかし,たとえば体 {0,1} の上で多項式を考えるようなときは,多項式としては X2≠X であるが,
すべての x (0と1しかない) で x2=x となって,f(X) と f(x) を区別する必要が生じる。
有理式については,分母を0にする場合の処理をめぐって,有理関数の場合と微妙に区別するのが普通である。
出典 ブリタニカ国際大百科事典 小項目事典
(引用終り)
以上



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch