18/11/15 21:29:00.63 77uFGJVQ.net
>>460
>>>451-452に書いてある内容は間違ってますよ]
はい、よく存じ上げてますよ
実に、アカデミックですね。
香ばしいですね
こうでしたね(下記引用)。
どうぞ、大学で見て貰って下さい
非可測集合の確率理論を!!
先生方は、歓迎されると思いますよ
私などを、相手にぜずにね
(引用開始)
現代数学の系譜11 ガロア理論を読む28
(抜粋)
スレリンク(math板:1番)
7.ここで、極限を考える。n→∞だ。d = d(s) = nだった
lim (n→∞)d で、d→∞。そして、極限を考えても、同値s ~ r は不変だ
スレリンク(math板:2番)
問題追加
lim[n→∞]s_n はどんな数列か?
スレリンク(math板:6番)
普通の確率での事象は可測なので、フビニの定理から積分の順序によらず積分値は同じですが、
このゲームの場合、プレーヤー2が勝つ事象は非可測なので、積分の順序によって積分値が変わってもおかしくありません。
スレリンク(math板:15番)
したがって、プレーヤー2が勝つ確率は次の式になる:
pA = ∫[K]{∫[E_k]dμ(s)}dν(k) = ∫[K]{μ(E_k)}dν(k).
これらの積分値は同じだろうか?
事象Eが可測ならフビニの定理より同じになるが、非可測なら同じとはいえない。
スレリンク(math板:20番)
・非可測集合ではouter measureで議論する必要がある
・通常の確率的直感は役に立たない
というTaoのコメントを読んだことがあります。
つづく