18/10/28 17:38:41.43 OoFzQOQE.net
前スレを見て、スレ主には唖然とした。
じゃ、おっちゃんもう寝る。
26:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 17:41:12.54 6dvusTGC.net
>>20
>補題1.5の証明もなんか怪しいんだが
えーと、補題1.5は下記だが、これは元PDFから、文字コピーして、
それをアスキーでない部分を手でアスキーにしたんだが
それで確認だが、補題1.5自身は成立と思っているのだが、それで良いかな?
証明はともかくとして
スレ49 スレリンク(math板:178番)-179
(抜粋)
178 投稿日:2018/01/05
(抜粋)
補題1.5 f : R → R とx ∈ R は
lim sup y→x |(f(y) - f(x))/(y - x)|< +∞
を満たすとする. このとき, ある正整数N,M >= 1 に対して
∀y, z ∈ R [x - 1/M < y < x < z < x +1/M → |f(z) - f(y)| <= N(z - y)]が成り立つ.
証明
仮定により,
lim sup y→x |(f(y) - f(x))/(y - x)|< N
を満たす正整数N が取れる.
lim sup y→x |(f(y) - f(x))/(y - x)|= inf δ>0 sup 0<|y-x|<δ |(f(y) - f(x))/(y - x)|
に注意して,
inf δ>0 sup 0<|y-x|<δ |(f(y) - f(x))/(y - x)|< N
ということになるので, あるδ > 0 に対して
sup 0<|y-x|<δ |(f(y) - f(x))/(y - x)|< N
である. 以下, δ > 1/M を満たす正整数M を1 つ取っておく. このとき,
∀y ∈ R [ |y - x| < 1/M → |f(y) - f(x)| <= N|y - x|] ・・・(1)
が成り立つことを示す. |y - x| < 1/M を満たすy ∈ R を任意に取る. もしy = x ならば, 明らか
に|f(y) - f(x)| <= N|y - x| が成り立つ. 以下では, y ≠ x としてよい. よって,
0 < |y - x| < 1/M < δ
となるので, δの定義から,
|(f(y) - f(x))/(y - x)|< N
となる. 特に, |f(y) - f(x)| <= N|y - x| となる. 以上より, (1) が成り立つ. 以上の準備のもとで,
題意を示す. y, z ∈ R であって
x - 1/M < y < x < z < x +1/M
を満たすものを任意に取る. このとき, (1) により
|f(z) - f(y)| <= |f(z) - f(x)| + |f(x) - f(y)| <= N|z - x| + N|x - y| = N(z - y)
が成り立つ(絶対値が外れてN(z - y) になっているのは, y < x < z から出る). よって, 題意が成り立つ.
(引用終り)
27:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 17:46:25.47 6dvusTGC.net
>>25
補足
1.もし、スレ49のNo.178のアスキー文を読んだとしたら、私のタイプミスもありうるのでね
2.なので、補題1.5の成否と、その証明の成否は、分けて考えたいのだが
28:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 18:02:03.65 6dvusTGC.net
>>23-24
おっちゃん、どうも、スレ主です。
生きていたんですね(^^
お元気そうでなによりです
>スレ主は一致の定理が成り立つことを否定したのか。
そんなことはしていないよ
例の定理の主が、我田引水で強引な主張をしているだけのこと
例の定理の主が、言いたいことは、
例の定理1.7と系1.8との関係で背理法を使っているのだが
そのアナロジーとして、一致の定理の背理法証明を持ち出して、自分の背理法証明を守ろうとしているってことですよ
それに対して、私は、系1.8は、補集合が稠密で開区間が取れない場合にも関わらず
定理1.7は明らかに、開区間が取れる場合、即ち、補集合が稠密でない場合の定理だから、それを適用することは誤りだと主張している
で、一致の定理の背理法証明と、彼の定理1.7→系1.8の背理法証明とは、きっと微妙に違うんだわ(面倒だからスルーしたけど)
で、彼の定理1.7は、補集合が有理数Qのような稠密な場合は、当然、開区間が取れないので不成立
つまり、彼の定理1.7は、「補集合が有理数Qのような稠密な場合ではない」というのが、隠れ条件になっていると思う
(それは本来明示すべきと思う。そして、「補集合が有理数Qのような稠密」な場合は、別に定理を立てるべき。そういう主張です)
29:132人目の素数さん
18/10/28 19:16:38.24 e/MTVXjW.net
アホが主張するなコピペだけしてろと何度言えば理解できるのか?
いやそれが理解できないことがアホたる所以なのか
30:132人目の素数さん
18/10/28 19:22:58.33 e/MTVXjW.net
普通のアホは外界との相互作用により己のアホ具合を認知するが
認知症レベルのアホには一縷の望みも無い
31:132人目の素数さん
18/10/28 19:28:32.09 xpViSH3/.net
>>26
補題1.5自体は(定義1.1から系1.4を承認した上で)多分合っていると思う
証明は最初の1文「仮定により,lim sup y→x |(f(y) - f(x))/(y - x)|< N
を満たす正整数N が取れる. 」はいいとして次の式lim sup y→x |(f(y) - f(x))/(y - x)|= inf δ>0 sup 0<|y-x|<δ |(f(y) - f(x))/(y - x)| から怪しい
32:132人目の素数さん
18/10/28 20:15:46.90 WEdrppmC.net
糞スレ乱立させんな
ブログでやれカス
33:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 20:53:59.70 6dvusTGC.net
>>30
>補題1.5自体は(定義1.1から系1.4を承認した上で)多分合っていると思う
了解。安心したよ(^^
>次の式lim sup y→x |(f(y) - f(x))/(y - x)|= inf δ>0 sup 0<|y-x|<δ |(f(y) - f(x))/(y - x)| から怪しい
えーと、ここ分かり難いけど
前スレ53 スレリンク(math板:605番)
定義1.1 一般に, g : R → R とx ∈ R に対して,
lim sup y→x g(y) := inf δ>0 sup 0<|y-x|<δ g(y)
と定義される.
(引用終り)
ここの定義1.1で、g(y)=|(f(y) - f(x))/(y - x)| と置いただけと思う
余談だが、
前スレ53 スレリンク(math板:609番)
”定義1.1 一般に, g : R → R x ∈ R で, ある点a ∈ Rに対し
上極限が
lim sup x→a g(x) := inf δ> 0 sup 0<|x-a|<δ g(x)
と定義される.”
と書くのが、普通の数学の書き方だと思った
(引用終り)
と書いたのと関連しているが、変数をx、固定点を定数aとか、
普通の数学記法に従って書いてないので、読みづらかった
まあ、こっちがこの手の記法に慣れていないからかも知れんがね(^^
34:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 21:23:40.23 6dvusTGC.net
>>17
これ(下記)ちょっと読み直しているのだが、
下記の”Peano differentiable”、 ”Peano derivative”がよく分らない
検索したが、
分り易い文献がヒットせず(^^;
<The modified ruler function のまとめサイト下記>
URLリンク(mathforum.org)
Topic: Differentiability of the Ruler Function Dave L. Renfro Posted: Dec 13, 2006 Replies: 3 Last Post: Jan 10, 2007
(抜粋)
[17] Alec Norton [Kercheval], "Continued fractions and
differentiability of functions", American Mathematical
Monthly 95 #7 (Aug./Sept. 1988), 639-643.
[MR 89j:26009; Zbl 654.26006]
Define g:R --> R by g(x) = 0 if x is irrational, g(0) = 1,
and g(p/q) = 1/2^q if p and q are relatively prime with
q > 0.
PROPOSITION: There exists a partition A_0, A_1, A_2, ...
and A_oo of the irrational numbers, where each set is
c-dense in the reals, such that g is infinitely Pean
35:o differentiable at each point of A_oo and, for each n >= 0 and for each x in A_n, g is n-times Peano differentiable but not (n+1)-times Peano differentiable at x. Moreover, the complement of A_0 is a first category set and the complement of A_oo is a Lebesgue measure zero set. NOTE: Norton says "uncountable dense sets" instead of "c-dense in the reals". While it is a little ambiguous what he means (uncountable sets that are dense in the reals, or sets having an uncountable intersection with every open interval) until one gets to the proof, it is clear from the proof (the sets involved are Borel, for instance) that the sets are, in fact, c-dense in the reals. つづく
36:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 21:24:09.02 6dvusTGC.net
>>33
つづき
Regarding Peano derivatives, this is easy to find on
the internet. Norton writes: "... the Peano derivative
agrees with the ordinary higher derivatives whenever
the latter is defined, and has the virtue of allowing
us to discuss higher derivatives in the context of a
dense set of discontinuities."
The complete text of Norton's remarks on p. 642 follow,
with minor editing changes to accommodate ASCII format.
Remarks. (1) The Proposition says that g is either not
differentiable at "most" points or infinitely differentiable
at "most" points, according to whether "most" is interpreted
in the sense of category or measure. This is related to the
well-known dichotomy between the Diophantine irrationals
and the Liouville irrationals (those which are not
Diophantine). See [Oxtoby's book] for more on this
interesting topic.
つづく
37:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 21:24:31.98 6dvusTGC.net
>>34 つづき (2) Suppose we alter the definition of g so that 2^q is replaced by w(q), where w:Z+ --> Z+ is some increasing function. Then the following are left to the reader. (See [Nymann's paper] for (a) and other related results.) (a) If w(q) = q^2, then g is nowhere differentiable. (Use (2).) (b) If w(q) = q^3, then g is differentiable on a dense, uncountable set of irrationals, but nowhere twice differentiable. (c) No matter how rapidly w increases, the set A_0 of points of nondifferentiability is residual. As a consequence of (c), no function vanishing at the irrationals and discontinuous at the rationals can be differentiable at the irrationals. In fact, a little more argument shows that no function can be discontinuous at every rational but differentiable at every irrational. (This last has been known, by another method of proof, for some time, e.g. [Boas' "Primer of Real Functions"], [Fort's paper].) The following theorem implies (c) and the above statements, and provides a nice application of the Diophantine approximation point of view. (A slightly weaker version appears in [Heuer's 1966 paper] and is considered from a more general viewpoint in [Beesley, Morse, and Pfaff's 1972 paper].) つづく
39:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 21:24:50.73 6dvusTGC.net
つづき
On p. 643, Norton proves the following result.
THEOREM: Let f:R --> R be discontinuous on a set of points
that is dense in R. Then there exists a co-meager
(i.e. residual) set B such that for all x in B
and for all s > 0, f fails to satisfy a pointwise
Holder condition of order (exponent) s at x.
NOTE: See also the comments I make in Heuer [15] and Nymann [16] above.
(引用終り)
40:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 21:29:38.89 6dvusTGC.net
>>33
和文では下記くらい
英文なら、専門的な論文多数ヒットだが
ぱらぱら見たが、私には重すぎる感じだな(^^
URLリンク(kaken.nii.ac.jp)
科研費
(抜粋)
1998 年度 実績報告書
2進群上のベゾフ空間におけるフーリエ解析 公開日 : 1999-12-11 更新日 : 2016-04-21
研究概要
今後の課題として,B^α_<pq>(2^ω)をチェザロ平均により特徴づけることや弱微分,強微分,
Peano微分の関係やこれらによるB^α_<pq>(2^ω)の特徴付け等が残っている.
41:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 21:35:15.83 6dvusTGC.net
>>27
”顧みて他を言う”
URLリンク(kotobank.jp)
コトバンク
(抜粋)
顧みて他を言う
(読み)
カエリミテタヲイウ
デジタル大辞泉の解説
顧(かえり)みて他(た)を言う
《「孟子」梁恵王下から》
答えに窮して、あたりを見回して本題とは別のことを言ってごまかす。
42:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 21:43:44.91 6dvusTGC.net
>>38
数学はディベートとは違う
”顧みて他を言う”では済まない
自分の背理法証明の失敗を、
一致の定理の背理法を引いて、
救うことはできない
(>>14より)
定理1.7 (スレ26のNo.422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }
と置く: もしR-Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
(引用終り)
条件の”内点を持たない閉集合の高々可算和
43:”を場合分けして 1)稠密でない場合 2)稠密な場合 それぞれを、証明すれば、それで終りの話だ 1)では、「ある開区間の上でリプシッツ連続である」は、楽に成立する 2)では、「ある開区間の上でリプシッツ連続である」は、成立しえない 2)の場合に、そんな関数は存在しないことが言えれば、系1.8は言える それを、さっさと実行すればいいだけのことです。数学としては、それが王道でしょ?
44:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/28 21:47:08.89 6dvusTGC.net
>>39
場合分けは、数学の基本中の基本
場合分けしたら、証明できない??
そんなバカな話は、聞いたことがない
が、おかしなことに例の定理の主さん、
これに抵抗するんだな
どうなっているんだろう?
45:132人目の素数さん
18/10/28 22:08:20.50 e/MTVXjW.net
消えろトンデモ
46:132人目の素数さん
18/10/29 00:57:55.10 4srmLQLt.net
>>32
>ここの定義1.1で、g(y)=|(f(y) - f(x))/(y - x)| と置いただけと思う
wwwww
要するに定義1.1は使い物にならないということで
47:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/29 06:27:58.17 vmxe29It.net
>>41
ありがとう(^^
48:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/29 06:57:01.74 vmxe29It.net
>>42
>要するに定義1.1は使い物にならないということで
自分には分かり難かったね
普通、>>32に書いたように、二つの変数x、yを使うのではなく
一つの変数xと、一つの定数aとを使う
二つの変数x、yを使う表現は、混乱するかも
(二つの変数x、yを、同時に動かす気はないんだろう。普通の極限の定義と思う)
49:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/29 07:58:30.14 vmxe29It.net
>>44 補足
(抜粋 >>25より)
補題1.5 f : R → R とx ∈ R は
lim sup y→x |(f(y) - f(x))/(y - x)|< +∞
を満たすとする. このとき, ある正整数N,M >= 1 に対して
∀y, z ∈ R [x - 1/M < y < x < z < x +1/M → |f(z) - f(y)| <= N(z - y)]が成り立つ.
(引用終り)
ここで、最初の「lim sup y→x」でのyと、後の「∀y, z」でのyと、同じyを使っているが
なんの関係もないんだ
だから、>>32で指摘したように
”定義1.1 一般に, g : R → R x ∈ R で, ある点a ∈ Rに対し
上極限が
lim sup x→a g(x) := inf δ> 0 sup 0<|x-a|<δ g(x)
と定義される.”として
(改善版)
補題1.5 f : R → R x ∈ R で, ある点a ∈ Rに対し
lim sup x→a |(f(x) - f(a))/(x - a)|< +∞
を満たすとする.
このとき, ある正整数N,M >= 1 に対して
∀y, z ∈ R [a - 1/M < y < a < z < a +1/M → |f(z) - f(y)| <= N(z - y)]が成り立つ.
(終り)
と表現する方が、分り易いと思う
最初の式と後の式で、共通はaだけになって、すっきりすると思う
まあ、証明の初版だし、許容範囲と思うが、
ちょっとした気遣いは必要と思うよ
50:132人目の素数さん
18/10/29 12:34:24.65 4srmLQLt.net
そもそも|(f(y) - f(x))/(y - x)|の点xにおける上極限はどういう時に有限になるんだろうか
51:132人目の素数さん
18/10/29 20:01:35.45 4srmLQLt.net
しかし凄まじく虚しい感じがしてきた。定義1.1はxの関数 sup 0<|y-x|<δ g(y) の従属変数が単調でないと適用できないはずなんだよなぁ。
これが一般に定義される、と言ってしまうと後の叙述では特に断りを入れないとsup 0<|y-x|<δ g(y)が単調でないgは扱えなくなる。何がしたいんだか。
「証明」を書いたのは恐ろしく虚無的な人間なんだろう。
52:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/29 20:39:13.97 vmxe29It.net
>>46
その話は、例の定理の主さん、詳しかったね
過去ログでいろいろ例示を教えて貰ったよ(^^
まあ、まずは、下記知恵袋でも(^^
URLリンク(detail.chiebukuro.yahoo.co.jp)
yahoo 知恵袋トップ>教養と学問、サイエンス>数学
(抜粋)
fiy********さん2017/6/1114:16:20
リプシッツ連続とはなんなのかさっぱりわかりません。
いろいろ調べましたが理解できませんでした
どなたかリプシッツ条件について簡単に教えて下さいm(__)m
よろしくお願いします
ベストアンサーに選ばれた回答
sma********さん 2017/6/1213:55:13
もう少し具体的に質問された方が回答しやすいのですが...
とりあえず定義を書いておきます.
【定義】
関数 f(x) が「リプシッツ連続」であるとは,
ある定数 K≧0 が存在して, 任意の x,y∈R に対して,
|f(x) - f(y)| ≦ K |x-y|
が成り立つこと.
あるいはもっと一般に.
【定義】
(X,dx), (Y, dy) を距離空間とする.
53:写像 f : X→Y が「リプシッツ連続」であるとは, ある定数 K≧0 が存在して, 任意の x,y∈X に対して, dy(x,y) ≦ K dx(x,y) が成り立つこと. ※ 何か不明な点があれば補足します. 質問した人からのコメント2017/6/17 20:46:36 ありがとうございました (引用終り) つづく
54:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/29 20:44:30.76 vmxe29It.net
つづき
>>48
あと、下記の関連を読むのが良いと思う
URLリンク(detail.chiebukuro.yahoo.co.jp)
(抜粋)
続いて関連質問列挙
・関数f(x) がリプシッツ連続であるとは,ある定数M > 0 が存 在して,不等式|f(...
・”リプシッツ連続ならば連続である” の反例を分かりやすく教えてください。
・リプシッツ連続に関して質問です。 f(x)=x^2に関してリプシッツ連続かどうか求め...
・f(x)=x f(x)=x^2 はそれぞれリプシッツ連続ですか? またリプシッツ連続の場...
・解析学(微分)について質問です。 『リプシッツ条件』ってなんですか? リプシッ...
・数学 リプシッツ連続の問題です g(x)=√xが(0,1)でリプシッツ連続でないことを示し...
関連度の高い質問
・リプシッツ連続の判定についてf(x) = -xlog|x|がx=0以外でリプシッツ連続であるこ...
・次の連続関数はリプシッツ写像であるかどうか調べよ(1)E^1→E^1;x→sinx解き方分...
・1階微分がリプシッツ、またはヘルダー連続になる関数y=f(x)って、どんな関数です...
(引用終り)
以上
55:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/29 21:03:58.96 vmxe29It.net
>>49
補足
1)あと、多項式の関数 y=an x^n+an-1 x^(n-1)+・・・+a1 x+a0
は、微分しても、y' は x→∞ の場合のみ y' →∞ になるので
xが有限の範囲では、リプシッツ連続 (但し、リプシッツ定数 k < ∞ )
2.分数べきで、1未満の関数 例えば、 y= x^(1/2) では、 y’=(1/2) x^(-1/2) =1/(2*x^(1/2)) (注 微分すると負数冪になる関数な。なお、 式中の*は、エクセルで使う積の記号です。普通は数学では省略されるのだが、アスキー文では見難いので入れた)
ここで、x→0で、y’→∞ となるので、x=0でリプシッツ連続ではない
とりあえず、こんな簡単な例でもどうぞ
例の定理の主さん、
もっと面白い例を沢山挙げていたけどね(^^
56:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/29 21:17:25.82 vmxe29It.net
>>47
ああ、そういう見方もあるかな(^^
>>32に書いたけど
”定義1.1 一般に, g : R → R x ∈ R で, ある点a ∈ Rに対し
上極限が
lim sup x→a g(x) := inf δ> 0 sup 0<|x-a|<δ g(x)
と定義される.”
として
>>45の補題1.5で
(改善版)
補題1.5 f : R → R x ∈ R で, ある点a ∈ Rに対し
lim sup x→a |(f(x) - f(a))/(x - a)|< +∞
を満たすとする.
(引用終り)
で、lim sup x→aを、「inf δ> 0 sup 0<|x-a|<δ」を使った表現に、定義1.1を使って書き直して
(>>25の証明の)
”あるδ > 0 に対して sup 0<|y-x|<δ |(f(y) - f(x))/(y - x)|< N である. ”
みたいな風に、式を展開していきたいための、定義1.1だと思ったけど
私は、全く単純に、こう考えたんだがね(^^
57:132人目の素数さん
18/10/29 21:54:34.96 4srmLQLt.net
>>49 >>50
有り難う。自分が知りたいのは、リプシッツ連続になる例から何が言えるのか、なんだから参考にしてみる。
>>51
それならリムスプは一切書かずに上限の下限で一貫すればいいと思うんだよね。
58:132人目の素数さん
18/10/30 11:59:44.44 w2+0k7oK.net
>>52
前半了解
で、後半は、定理の主さんは、いろいろ考えがあって、
これが分かりやすいと思ったのでしょうね
(>>51より)
”定義1.1 一般に, g : R → R x ∈ R で, ある点a ∈ Rに対し
上極限が
lim sup x→a g(x) := inf δ> 0 sup 0<|x-a|<δ g(x)
(引用終わり)
これ明らかに、”イプシロン・デルタ論法”に持ち込みたいって意図ですよね(^^
つまり、「lim」の記号を、「inf δ> 0」みたく書きたいという意図
参考に、下記に”イプシロン・デルタ論法”の例がありますので、見てください
URLリンク(nekodamashi-math.blog.so-net.ne.jp)
ねこ騙し数学
第19回 リプシッツ連続と一様連続 2017-06-08
(抜粋)
Xを実数Rの空でない部分集合とし、fをXからRへの関数とする。このとき、任意のx1,x2∈Xに対して、あるK>=0が存在し、
|f(x2)-f(x1)| <= K|x2-x1| (1)
であるとき、fはXでリプシッツ連続という。また、(1)式の定数Kをリプシッツ定数と呼ぶ。
関数f(x)がXでリプシッツ連続であるとき、f(x)がXで連続であることは、次のように証明できる。
(引用終わり)
59:132人目の素数さん
18/10/30 12:50:15.58 s/HOWja1.net
>>47だけど単調うんぬんはどうも間違った事を書いてしまったようだ。済まない。
それでもinf δ> 0 sup 0<|x-a|<δ g(x)のinf δ> 0というのはやっぱりおかしい。
多分inf 0<δ<+∞のつもりで書いたんだろうが、これだと上限の上界が決まらない。
lim δ→0 sup 0<|x-a|<δ g(x)にすべきだろう。
60:132人目の素数さん
18/10/30 15:21:22.98 w2+0k7oK.net
>>54
まあ、下記でも読んでみて
(余談だが、”任意の(どんなに小さい)正の数ε に対しても,適当な(大きい)実数N(ε) を見つけて”と
親切に、小さい、大きいを書いてくれているのが良いね。多分数学科では、わざとスルーじゃないかな?)
URLリンク(www2.math.kyushu-u.ac.jp)
原隆(数理物理学)のホームページ 九大
URLリンク(www2.math.kyushu-u.ac.jp)
基礎数学演習III (物理学科)
Last updated: 2011/08/04
URLリンク(www2.math.kyushu-u.ac.jp)
基礎数学演習III (物理学科) 講義内容のまとめ(5/18版)2011
大学2年向け
1 極限の厳密な定義(最低限)
(抜粋)
皆さんは高校でlim n→∞ an = α という式の意味を習ったはずだ.
多分,n が限りなく大きくなるとき,an が限りなくα に近づくなどという「定義」を聞いたのではないか?
この定義は特に間違ってはいないし,これで十分な場合はこれでやれば良い.
しかし,この言い方は以下の理由で困ったものである.
次に,「近づく」「大きくなる」などの「動き」が何となく入っており,考えにくい.
・もっと困ったことに,この言い方には「どのくらい速く極限に収束するのか」の収束の速さに関する言及が全くない.
そのため,少しややこしい極限?? 特に2つ以上の変数が混ざった極限1?? を考えだすと,お手上げになる.
これらの欠点を克服すべく,極限への収束の速さまで含めた,定量的な定義が考えられた.これがε-N 論法で,
以下のように書かれる.
(ア)任意の(どんなに小さい)正の数ε に対しても,適当な(大きい)実数N(ε) を見つけて,
すべてのn > N(ε) で,|an ? α|< ε とできる.
1.2 関数の極限:ε-δ 論法
この定義にもε-N 論法の時と同じ注意が当てはまる.簡単に繰り返すと
・極限を考えているのに,ともに正で有限のε, δ しか定義に現れないところがミソである.
・ε, δ をどんなに小さくとっても良いという掛け合い漫才によって,
「x がa に近づく」ときに「f(x) がb にいくらでも近づく」ことを表現しているのは,ε-N 論法と同じである.
つづく
61:132人目の素数さん
18/10/30 15:22:04.04 w2+0k7oK.net
>>55
つづき
1.6 上極限と下極限
収束先がわからない数列が収束するか否かを判定するもう一つの必要十分条件として,
「上極限」と「下極限」を考えておくことにする.
そのあとで,「コーシー列なら収束する」の証明も付け加えよう.
A の端と端を決める(ギリギリの数にする)つもりで,「上限」と「下限」を定義する.
定義1.6.2 (上限と下限) A を実数の集合とする.A が上に有界のとき,
A の上界の最小値をA の上限(supremum)と定義し,sup A と書く.
同様にA が下に有界のとき,A の下界の最大値をA の下限(infimum)と定義し,inf A と書く.
(注)上限と上界は間違いやすいから,注意する事.(正直,僕は日本語だとどっちがどっちだったかすぐにわからなくなる.)
以上の準備の下に,数列an の上極限と下極限を以下のように定義する.
定義1.6.4 (上極限と下極限) 実数列{an} が与えられたとき,極限
lim n→∞ (sup k?n ak) (1.6.1)
を{an} の上極限といい,lim sup n→∞ an (1.6.2)
上極限の定義の中に現れている
(sup k?n ak)は,n について単調減少である.
従って,上極限は必ず存在する(特別な場合として+∞ も極限に含めるとして).
(引用終わり)
以上
62:132人目の素数さん
18/10/30 15:26:38.00 w2+0k7oK.net
>>56 文字化け訂正
lim n→∞ (sup k?n ak) (1.6.1)
↓
lim n→∞ (sup k >= n ak) (1.6.1)
(sup k?n ak)
↓
(sup k >= n ak)
余談だが、ほんと不便な板だよ
ちょっと凝った数学記号が入ると、すぐ文字化け発生だからね
まあ、原文見てもらう方が早い
63:132人目の素数さん
18/10/30 15:44:46.62 w2+0k7oK.net
>>55
この原先生の「極限の厳密な定義(最低限)」は、過去スレでも紹介していると思う
まあ、物理学科生向けに、数学の厳密な扱いを教える講義らしい
で、数学科向けではおそらく省略される(わざと省略する?)表現が
入れてあるので、良いと思った
(私らには、イメージがはっきりして有難いんだ)
”1.6 上極限と下極限”(>>56)
まあ、分かっていると思うが
「A の端と端を決める(ギリギリの数にする)つもりで,「上限」と「下限」を定義する.」
「A が上に有界のとき,A の上界の最小値をA の上限(supremum)と定義し,sup A と書く.」
ってことで、
定理の主さん 定義1.1で
”上極限が
lim sup x→a g(x) := inf δ> 0 sup 0<|x-a|<δ g(x)”(>>53)
みたく、inf sup を使っていると思う
(ここら、もうちょっと調べると、資料が見つかるかもね)
あと、>>47で書かれた”単調”って話も
「(sup k >= n ak) は,n について単調減少である」(>>56)
と出てくるので、話は合っている気がするよ
64:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/30 20:54:30.30 /2K/bmCN.net
>>58
>>47の”単調”って話も、ID:4srmLQLtさん なかなかレベル高いね
おれら、ぜんぜん浮かばないキーワードだわ(^^;
65:132人目の素数さん
18/10/30 21:38:16.05 tmNkZpOf.net
ロリータさんと初のお散歩
URLリンク(m.youtube.com)
66:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 07:23:10.70 +fG3tkH8.net
>>53
良いテキストが見つかった(下記)
この服部哲弥先生の数学基礎も、当時過去スレで紹介だけはしたんだがね(^^
”(11) lim  ̄n→∞ an = inf N∈N sup n >= N an”辺り、原文を見て下さい
URLリンク(web.econ.keio.ac.jp)
服部哲弥
現職:慶應義塾大学経済学部 教授
1958年生まれ 1985年東京大学大学院理学系研究科博士課程(物理学専攻)修了(理学博士)
専門:数理物理学,確率過程論
URLリンク(web.econ.keio.ac.jp)
1999-2002年度(於名古屋大学1年理系対象)の記録
URLリンク(web.econ.keio.ac.jp)
数学基礎 第1学期.1変数関数の初等解析学.服部哲弥 2002
(抜粋)
P10
§3.2 数列の上極限,収束,極限.
問題点は何か. これから,いくつかの単語を定義する.なぜか?
最終的に定義したいのは極限だが,周知のように極限は必ずあるとは限らない.上極限は上に有界な数列
なら必ず存在する.極限の存在しない数列があることは良く知っているだろうが,極限が存在しなくても
67:n が大きくなるときのan の傾向を示す量が必ず存在してほしい. 上極限は,n が大きいときのan たちの「最大値の極限」である. 例えばan = (?1)n のとき, 上極限は lim  ̄n→∞ an = 1 であり, 下極限は lim _n→∞ an = ?1 である. そして上極限と下極限が一致するとき極限がある,と定義することができる. 定義4 (上極限) 「プレ」極限の概念として上極限がある. これは数列の遠く(大きなn)のほうの上限という気持ちである. 数列{an} の上極限lim  ̄n→∞ an とは 単調減少数列 bN = sup{an | n = N,N +1,N +2, ・ ・ ・}, N ∈ N, の下限のことを指す. 定義を式で書けば, (11) lim  ̄n→∞ an = inf N∈N sup n >= N an 上限や下限は数列のn の小さい方も影響するが, 上極限や下極限はn が大きくなった「ずっと遠くの傾向」のみが影響する. lim  ̄, lim _ はそれぞれ上(下)極限を表す一つの記号. limsup とも書くが,sup をとってさらにlim をとる,という意味ではない! (引用終り)
68:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 07:26:32.43 +fG3tkH8.net
>>61 補足
「数列{an} の上極限lim  ̄n→∞ an とは
単調減少数列 bN = sup{an | n = N,N +1,N +2, ・ ・ ・}, N ∈ N, の下限のことを指す.」
と書いてある
ID:4srmLQLt(>>47)さんの”単調でないと適用できないはず”という発言は
ここらのことを言おうとしていたのかな
69:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 07:57:05.10 +fG3tkH8.net
>>61
で、おれら言いたいことは、もっと単純な話で、
>>39にも書いたけど
(>>14より)
定理1.7 (スレ26のNo.422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }
と置く: もしR-Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
証明
このとき, 補題1.5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である.
系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.
証明
定理1.7 が使えて, f はある開区間(a, b) の上でリプシッツ連続である.
一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛盾. よって, 題意が成り立つ.
(引用終り)
ってことなんだけど
つづく
70:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 07:58:22.49 +fG3tkH8.net
>>63
つづき
定理1.7で、「f はある開区間の上でリプシッツ連続である」なのだから
定理1.7で、場合分けして
1)リプシッツ連続でない点の集合 が、R中で稠密稠密でない場合
2)リプシッツ連続でない点の集合 が、R中で稠密稠密である場合
として、
定理1.7は、上記1)の場合の定理なのだ
上記2)の場合は、定理1.7の外
2)の場合に、こういう関数
具体的には、例えば、
有理数の集合Q上でリプシッツ連続でなく、無理数の集合P上でリプシッツ連続である
そういう関数が存在するかどうか
それが問題になる
つづく
71:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 08:04:50.69 +fG3tkH8.net
>>64
つづき
で、「系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R 」は
2)の場合に当てはめるべき関数であると。
1)の場合に当てはまらないよと
2)の場合の上記例のように、「有理数の集合Q上でリプシッツ連続でなく、無理数の集合P上でリプシッツ連続である」
という関数が、存在しなければ、その系として、系1.8は導ける
存在すれば、系1.8は導けない
(元々系1.8は既存の確立した論文があって、簡単な別証明を考えようがスタートだったのだが、
2)の場合の関数が存在するなら、系1.8の上位の定理 ”リプシッツ連続とリプシッツ不連続”の定理みたいなの(それが定理1.7だった)を作って、
その系として、「系1.8 ”微分と不連続”の場合」を導くことはできないってことになると
でも、さすがに、「f はある開区間の上でリプシッツ連続である」という定理1.7を、
2)の”リプシッツ連続でない点の集合 が、R中で稠密である場合”に、適用しようというのは、無茶。そういう主張です)
以上
72:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 08:05:34.85 +fG3tkH8.net
>>64
訂正
1)リプシッツ連続でない点の集合 が、R中で稠密稠密でない場合
2)リプシッツ連続でない点の集合 が、R中で稠密稠密である場合
↓
1)リプシッツ連続でない点の集合 が、R中で稠密でない場合
2)リプシッツ連続でない点の集合 が、R中で稠密である場合
73:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 10:04:01.43 ThQXYhCH.net
>>58
おっと、昨日はコテハンとトリップが抜けていたね(^^
74:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 10:33:36.39 ThQXYhCH.net
>>63 追加
で、
定理1.7 (スレ26のNo.422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }
と置く: もしR-Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
の証明もすべっていると思う
つまり、証明の中のどこかで、ある開区間が取れて、
そこで、リプシッツ連続になる
あるいは、Bf 内に開区間が取れる
そういうものを無意識に使っちゃったんだと
そう思っている
だって、「R-Bf が内点を持たない閉集合の高々可算和」というのがR中に稠密に存在するなら
Bf内には、開区間は取れないし、きっと、「f はある開区間の上でリプシッツ連続である」も言えないと思うから
でも、そういう証明の詳細に入る前に大きな問題がある
だから、そこには入らずに議論したかったし
なにより、具体的にどこがどうってところまで
まだ詰め切れていない
まあ、だいたいここかなというのはあるけどね
でも、それをまた数学的な主張まで煮詰めるのも大変だし、それをこの板で表現するのも大変だしね
でも、面白い問題ではある
75:132人目の素数さん
18/10/31 10:55:01.33 PPhF82WW.net
>>68
>と置く: もしR-Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
>f はある開区間の上でリプシッツ連続である.
>の証明もすべっていると思う
g(y) = 1/n^3 (∃m,n ∈N、y = m/n, (m,n) = 1 のとき) 0 (otherwise)
で定めて
f(x) = Σ[y∈Q、0≦y≦x] g(y)
と定めればR-BfはQの部分集合なので内点を持たない閉集合の高々可算和で被覆できるけどfは連続にならないのでは?
76:132人目の素数さん
18/10/31 11:23:49.31 HETxY8MH.net
間違った>>69は無視して下さい。
77:132人目の素数さん
18/10/31 13:06:19.21 r0MWiigz.net
【え! 総人口250万人減少?】 早く移民で水増しないと、■■■が原因だと、無関心層に気づかれる
スレリンク(liveplus板)
78:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 13:25:04.13 ThQXYhCH.net
>>69-70
了解
(”f(x) = Σ[y∈Q、0≦y≦x] g(y)”の部分が、意味が取れなかった)
79:132人目の素数さん
18/10/31 17:41:17.47 w61sMcUE.net
>>61のpdfの50頁を見るとlim δ→0 sup 0<|x-a|<δ g(x)の方で合っているみたいだ(ドヤァ)
80:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 18:13:20.30 ThQXYhCH.net
>>73
>>61のpdfの50頁を見るとlim δ→0 sup 0<|x-a|<δ g(x)の方で合っているみたいだ(ドヤァ)
へー、読むの早いね(^^
おれは、そこまでは、全く読まなかったんだ
で、えーと、それは、PDFのP50の命題51のすぐ下
(引用)「例えば
lim  ̄ x→x0 f(x) := lim δ→0 sup{f(x) | 0 < |x - x0| < δ} .
sup は実数値または∞ の意味で確定する.
sup{f(x) | 0 < |x - x0| < δ} はδ に関して単調増加なので
δ → 0 とともに減少し,右辺の極限はR ∪ {±∞} の意味で確定する.」
の部分だね
で、さらに命題52があって、証明中に、次の式
(引用)「0
= lim  ̄ x→c |f(x) - f(c)|
= lim δ→0 sup x; |x -c|<δ |f(x) - f(c)|
= inf δ>0 sup x; |x -c|<δ |f(x) - f(c)|.」
がある
(見易さを考えて=の前に改行を入れたが、本文では横に長い式な)
この式の最後の”inf δ>0 sup x; |x -c|<δ”の部分が
(>>53より)
定義1.1 で、「lim sup x→a g(x) := inf δ> 0 sup 0<|x-a|<δ g(x)」に
対応していると思うよ
なので、両方使って良いんだと思う(場合により、使い分けかな)
81:132人目の素数さん
18/10/31 19:34:21.50 w61sMcUE.net
>>74
「上限や下限は数列のn の小さい方も影響するが,
上極限や下極限はn が大きくなった「ずっと遠くの傾向」のみが影響する.」と書いておきながら何でだろうね。
inf δ> 0 だったら開球の大きさが無限大に発散するということにならないか。
82:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 20:52:57.30 +fG3tkH8.net
>>75
>「上限や下限は数列のn の小さい方も影響するが,
>上極限や下極限はn が大きくなった「ずっと遠くの傾向」のみが影響する.」と書いておきながら何でだろうね。
>inf δ> 0 だったら開球の大きさが無限大に発散するということにならないか。
貴方は読むの早いね(^^
それ、良い質問ですね(by 池上)
おれも、それちょっと考えたんだ(いや別の文献でだが)
上記は、>>61の
「上限や下限は数列のn の小さい方も影響するが,
上極限や下極限はn が大きくなった「ずっと遠くの傾向」のみが影響する.」
だね
それで上記は、数列anで、「lim  ̄n→∞ an」を考えているんだ
で、>>74の方 「lim  ̄ x→c |f(x) - f(c)| 」なんだけど
上記数列に書き直すと
点cに収束する数列 xn → c (n→∞) を考えて
「lim  ̄ n→∞ |f(xn) - f(c)|」と書くと、
P50の命題52と、上記の数列anとが、つながるんだ
(なおP50は、”20 連続性”の節なのだが)
もう少し追加で書くと
点cに収束する数列 xn → c (n→∞) だから、 |xn -c|<δ→0 (n→∞) ってことなんだ
で、関数fが点cで連続ならば、|f(xn) - f(c)| <ε →0 (n→∞) となる
要するに、n が大きくなって、n→∞のとき、δ→0(小さくなる)だし、
関数fが点cで連続ならばεの方も小さくなるよと
そういう 数列xn → c (n→∞) の記述(”n が大きくなった”うんぬん)と、
(>>74)”lim δ→0 sup x; |x -c|<δ”とのつながりじゃないかな
(参考)
https
83:://www.oricon.co.jp/news/82608/full/ 2010-12-01 17:25 オリコンNewS 【2010流行語トップテン】「いい質問ですねぇ」池上彰 喜びのコメント
84:132人目の素数さん
18/10/31 21:40:00.23 w61sMcUE.net
>>76
>点cに収束する数列 xn → c (n→∞)
収束するかなぁ。
85:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 21:41:55.32 +fG3tkH8.net
>>76
蛇足
「上限や下限は数列のn の小さい方も影響するが,
上極限や下極限はn が大きくなった「ずっと遠くの傾向」のみが影響する.」
で
関数の連続の場合には、
点cに収束する数列 xn → c (n→∞) を考えると
|xn -c|<δ→0 (n→∞) で、δが小さいところ、つまり点cに近いところの傾向 のみが影響する
という言い換えになるんだな
86:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 21:43:22.53 +fG3tkH8.net
>>77
>>点cに収束する数列 xn → c (n→∞)
>収束するかなぁ。
いや、これは”定義する”と読んでくれ
「点cに収束する数列 xn → c (n→∞)」を定義するってことね
87:現代数学の系譜 雑談 古典ガロア理論も読む
18/10/31 21:47:40.15 +fG3tkH8.net
>>79
蛇足だが
円周率 π を、小数点以下計算するみたいなもので
円周率 π を計算する公式(例えば級数展開)があって、
「その公式を使って、どんどん正確なπを計算する」みたいなことです
定義だから、必ずπに収束すると考えるべし
88:132人目の素数さん
18/11/01 00:14:39.11 EoSoJBXv.net
>>78
済まない。勘違いしていた。
考えたんだけど、inf δ> 0 sup 0<|x-a|<δ g(x) のg(x)の従属変数が単調でないと、どうあっても上限の上界が決まりそうにない。
関数値が+∞、-∞のときにδが+∞、とすることもできない。十分大きなδをとっても、さらに大きな開球に含まれている元がさらに大きな関数値と対応しているかもしれないし、していないかもしれない。
要するに、ε‐δではなく、ε‐Nでないといけない。>>79の点cに収束する数列の項は自然数と対応していなければならない。
89:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 08:05:30.36 ypCHJLQo.net
>>81
>考えたんだけど、inf δ> 0 sup 0<|x-a|<δ g(x) のg(x)の従属変数が単調でないと、どうあっても上限の上界が決まりそうにない。
>関数値が+∞、-∞のときにδが+∞、とすることもできない。十分大きなδをとっても、さらに大きな開球に含まれている元がさらに大きな関数値と対応しているかもしれないし、していないかもしれない。
>要するに、ε‐δではなく、ε‐Nでないといけない。>>79の点cに収束する数列の項は自然数と対応していなければならない。
ひじょうーに、良い質問ですね(by スレ主(^^ )
その考察正しいです
いま、説明の時間がないから、後で書くけど、自分でも考えてみて
多分そこまで考えているなら、自分で納得できる説明を考えつくでしょう
あと、
ヒント
・ここイプシロン-デルタ論法は、まずは関数の連続に使うのだが、少し進むと、位相の話で、開集合を使った同値な定義がある習う
この「位相の話で、開集合を使った同値な定義」と一緒に理解するのが良いと
・あと、関数の連続の話は、まずはある点aの回りの話ってことね。
そうして、R全体で連続とは、点aでの連続が全てのRの点で言えるという話の流れになるってこと
この2つで大体答え(納得できる説明)は、自分で見つかるんじゃないかな?
まあ、これ日本の数学科での”イプシロン-デルタ論法”教育の欠陥のような気がする
要するに、日本の数学科ってのは、数学の心を語らないんだ。そういう情緒を排除して、ロジック1本勝負みたいな
そうすると、C++さんなんかが書いていたけど、「”イプシロン-デルタ論法”が分らないからお経のように丸暗記しています」と
それではちょっとね(^^;
90:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 10:41:41.88 fVQUQsYi.net
>>82
まず訂正(細かいが)
誤 開集合を使った同値な定義がある習う
↓
正 開集合を使った同値な定義があると習う
本題は、開集合を使った同値な定義の資料下記3点ご参考
(自分の検索で上位に来たもの)
まあ、別の資料も沢山あると思うが
(貴方なら、既習の範囲かもしらんが(^^; )
記
1)
URLリンク(rikei-index.blue.coocan.jp)
91:zokusyazou.html 連続写像(開集合の逆像は開集合)理系インデックス (抜粋) これは微分積分学でよく知られている関数の連続性を一般化したものである。 実際、微分積分学で知られているεδ論法と同様の形をしている。 (引用終わり) 2) https://ja.wikipedia.org/wiki/%E9%80%A3%E7%B6%9A%E5%86%99%E5%83%8F 連続写像 目次 1 定義 1.1 開集合を用いた定義 1.2 閉集合を用いた定義 1.3 近傍系を用いた定義 1.4 点列および有向点族を用いた定義 1.5 閉包作用素による定義 3) http://www.math.titech.ac.jp/~kotaro/class/2011/set/ 授業/山田光太郎 東京工業大学大学院理工学研究科数学専攻 集合と位相第一 (2011年度) http://www.math.titech.ac.jp/~kotaro/class/2011/set/20110607.pdf 講義資料 10 開集合・閉集合 集合と位相第一 山田光太郎(東京工業大学理学部2年次)20110607 (抜粋) ■連続写像 定理10.17. 距離空間(X, dX) から(Y, dY ) への写像f : X → Y が連続であるための必要十分条件は, 任意のY の開集合U に対してf?1(U) がX の開集合となることである. (引用終わり)
92:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 10:53:23.95 fVQUQsYi.net
>>83
ああ、そうそう
学生さんなら、大学図書館で、
数学セミナー 2018年9月号
”やわらかいイデアのはなし/
連続写像の概念(演習)……藤田博司 70”(下記)
を、チラ見したらいいと思う
分かりやすく書かれていたと思う(^^
URLリンク(www.nippyo.co.jp)
数学セミナー 2018年9月号
・やわらかいイデアのはなし/
連続写像の概念(演習)……藤田博司 70
93:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 16:04:41.70 fVQUQsYi.net
>>82
「ε-δ論法」 で”∀ε>0”だから、∀=すべての、又は、任意の だよね
だから、”十分大きなδをとって”どうなるかを考える
そういうところでつまづく人もいるかも知れないね
原隆先生も>>55で書いてあるけど、
”任意の(どんなに小さい)正の数ε に対しても,適当な(大きい)実数N(ε) を見つけて”です。
同じことは、下記にもあるけど
まあ、お説のように、εで大きいところは、考えないんだ(だからδも(普通は)大きくならない)
まあ、それって、普通の数学の「∀=すべての、又は、任意の」と使い方が違う(普通大きい方も考えて良いが)。
これ、おかしいかもね
そこらの「なんで?」という疑問に答えるのが、上記の>>83とか>>84とかかな(^^
URLリンク(www.hellocybernetics.tech)
2017-04-29 HELLO CYBERNETICS
理系大学入学後にどん詰まる「ε-δ論法」について
(抜粋)
・はじめに
・ε-δ論法
・ε-δ論法が難しく感じる理由
・ε-δ論法の解説
・直感的な極限の話
・ε-δ論法での話
・最後に
ε-δ論法
ε-δ論法とは要するに、以下のように極限の定義を行うことです。
lim x→a f(a)=b
↓↑
∀ε>0,∃δ>0:|x - a| <= δ→|f(x) - b| <= ε
これで理解ができた人は、もうこれ以上記事を読む必要はありません。
ポイントと言えば、「任意のε」というのは結局のところ「非常に小さなε」と解釈していいということです。そしてεに対して「とあるδ」は何でも良いのです。小さいεに挟まれた式を成り立たせることのできるような適当なδを1つ見つければ良いのです。
大抵の場合、教科書は技巧的な仮定を置いていたりしますが、ともかくやろうとしているのは、「どんな小さなεが来ても、それに対応するδを準備出来ますよ」ということの証明です。
(引用終わり)
94:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 16:07:15.13 fVQUQsYi.net
>>85
youtube補足追加(外にもyoutube2本ヒットしたがスルー)
そこそこ分かりやすかった(1.5倍速で見た(^^; )
URLリンク(www.youtube.com)
【大学数学】ε-δ論法(関数の連続性)【解析学】
予備校のノリで学ぶ「大学の数学・物理」
2018/05/04 に公開
95:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 18:08:01.29 fVQUQsYi.net
>>86 補足
youtube 6分15秒くらいのところ(下記なんだが)
URLリンク(youtu.be)
この図で、εを狭くすると、
yの不連続ギャップにハマり込んで
xの領域 |x-a|<δを、いくら狭めても(δをいくら小さくしても)
不連続ギャップが存在するので、
|f(x)-f(a)|< ε という説明をしているのだが
もう少しくどく(ある意味大げさに)説明した方が良いと思った
まあ、分かると言ったら分かるけど
この場面が、このyoutube の一番のキモで要点のところだかね(^^
96:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 18:13:11.08 fVQUQsYi.net
>>87 訂正
|f(x)-f(a)|< ε という説明をしているのだが
↓
|f(x)-f(a)|< ε と出来ないという説明を、しているのだが
補足
まあ、youtubeビデオでも言っているのだが
εを小さく取っていくと、不連続からギャップにハマるところが出てくる
そこで、今度は、”xの領域 |x-a|<δ”側から見ると
|f(x)-f(a)|< εと出来てないねと
まあ、言葉で書くと
もどかしいけどね
youtubeビデオ見てください(^^
97:132人目の素数さん
18/11/01 19:31:28.24 NxsrVcRO.net
>>85
> 「どんな小さなεが来ても、それに対応するδを準備出来ますよ」
スレリンク(math板:124番)
> 時枝の無限長の数列で、決定番号は∞まで可能性があるから、決定番号が有限に収まる確率は0。
時枝記事の時にスレ主は極限(この場合はε-N)のことを全く理解できていなかったみたいだが
「どの同値類が来ても、それに対応する(有限値の)決定番号を準備出来ますよ」
ということです
だから決定番号が有限に収まる確率は1になる
98:132人目の素数さん
18/11/01 19:41:00.24 F5NNGDeB.net
極限どころか∀、∃の意味が理解できてなかったけどな
99:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 20:23:56.02 ypCHJLQo.net
>>89
ありがとう(^^
100:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 20:25:32.22 ypCHJLQo.net
>>90
ありがとう
で、そういうなら、あなたの説明は?
それなら、>>81-82の説明を聞きたいんだが?
まあ、逃げるんだろうね(^^
101:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 20:26:02.36 ypCHJLQo.net
>>91
それ正しいよ
102:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 21:01:30.22 ypCHJLQo.net
>>89
>「どの同値類が来ても、それに対応する(有限値の)決定番号を準備出来ますよ」
>ということです
>だから決定番号が有限に収まる確率は1になる
突然で、話が見えない人も多いだろうから、簡単に書くと
数学セミナー 2015年11月号 箱入り無数目 時枝 正(下記参考)で
話の前提は、こうだったね
1)可算無限個の箱の列(まあ自然数で1番~n番までの箱で、n→∞を実現したよと)
2)箱に任意の数を入れる(実数でもなんでも良し。重複も許す)
3)この数列を、列のしっぽの同値類で分類する
4)二つの数列において、ある番号mから先の数列しっぽが一致するとき、mを決定番号と呼ぶ
で、その流儀の説明倣えば
a)決定番号が1になる確率(2列の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから)
b)決定番号が2になる確率(2列の2番目以降の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから)
c)以下同様に、決定番号がkになる確率(2列のk番目以降の全ての、しっぽの対応する箱の数が、一致する場合の確率)は、0(∵しっぽが可算無限個の箱の列だから)
d)よって、どの有限な決定番号を考えても、それ以降の全ての、しっぽの対応する可算無限個の箱の数が、一致する場合の確率は、0になります !!(^^ (∵しっぽが可算無限個の箱の列だから)
(参考)
URLリンク(www.nippyo.co.jp)
数学セミナー 2015年11月号
箱入り無数目────────時枝 正 36
103:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 21:20:37.29 ypCHJLQo.net
>>92
一晩時間をやるから
>>81-82について
あんた、なんか書いて見なよ
何にも書けないなら
100年ROMってろってことよ
104:132人目の素数さん
18/11/01 21:3
105:2:57.32 ID:NxsrVcRO.net
106:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 23:05:44.08 ypCHJLQo.net
>>96
多分、その考え、確率計算の問題から逸れていると思うよ
例えば、簡単のために箱が二つあるとする(可算無限長の箱の列の代わりにね)
1)二つの箱に、サイコロで1~6の数を入れるとすると、二つが一致する確率は、1/6(説明は省略する)
2)二つの箱に、サイコロで1~100の数を入れるとすると、二つが一致する確率は、1/100(説明は省略する)
3)二つの箱に、サイコロで1~Nの自然を入れるとすると、二つが一致する確率は、1/N(説明は省略する)
4)3)において、N→自然数の集合全体に拡大すると、二つが一致する確率は、1/可算無限(説明は省略する)
5)3)において、入れる数を自然数→実数の集合全体に拡大すると、二つが一致する確率は、1/非可算無限(説明は省略する)
6)3)において、入れる箱を2つから可算無限個に増やすと、可算無限個の箱の実数が全て一致する確率は、1/(非可算無限)^(可算無限)(ベキね)(説明は省略する)
確率が0と、存在するとこととは、矛盾しません
107:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/01 23:34:10.61 ypCHJLQo.net
>>95
どうせ、一晩待っても何にも書けないんだろうが
まあ、別のこと(イプシロンデルタじゃないこと)でも書くか(^^
(>>63より引用)
定理1.7 (スレ26のNo.422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }
と置く: もしR-Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
証明
このとき, 補題1.5 を満たすN,M >= 1 が存在するので, 明らかにx ∈ BN,M である.
系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.
証明
定理1.7 が使えて, f はある開区間(a, b) の上でリプシッツ連続である.
一方で, x ∈ Q とf の仮定により, f は点x で不連続である. これは矛盾. よって, 題意が成り立つ.
(引用終り)
ここで、
「有理数の点でリプシッツ不連続, 無理数の点でリプシッツ連続となるf : R → R 」
を考えると
系1.8 の証明中にあるように、
リプシッツ不連続な集合有理数Qは、”内点を持たない閉集合の高々可算和で被覆できる”から、
定理1.7より、”f はある開区間の上でリプシッツ連続である”となる
これは、有理数の点が、R中で稠密に反する
矛盾を生じたので、このような関数は存在しないと結論される
が、これは、ちょっと論証としておかしい
当然定理1.7は、
このような関数f「有理数の点でリプシッツ不連続, 無理数の点でリプシッツ連続となるf : R → R 」
は、扱えない(場合分けの説明を、>>64に書いた通りである)
(本当に、存在するか、不存在かを立証するには、別の考察が必要であると)
つまり、もともとの定理1.7の設定(結論と条件)が適切でないと思うし、それが こういうおかしな帰結の原因であると思う
108:132人目の素数さん
18/11/02 00:51:15.66 d/y3aYM6.net
>>97
> 確率が0と、存在するとこととは、矛盾しません
>>94
> 1)可算無限個の箱の列(まあ自然数で1番~n番までの箱で、n→∞を実現したよと)
ε-NのN(決定番号に対応)が∞であれば極限は発散する
R^nをn→∞の極限を考えてR^Nにすると決定番号は有限値をとる
決定番号が∞ということはスレ主が選んだ無限数列がR^Nの元ではないということ
109:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 07:00:46.90 iLcpJ6Th.net
>>99
おれが>>97で書いたことは、それとは違う
・可算無限長の箱の列
・先頭からある有限個nを取り除いても、残りのしっぽは可算無限長の箱の列で、変化なし
・これが、時枝パラドックスの手品のたねの一つだろうと
(そもそも、「可算無限長の箱の列」は、時枝記事に書かれている前提条件ですしね)
110:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 07:20:37.28 iLcpJ6Th.net
>>98 補足
系1.8の背理法という邪念を捨てて
定理1.7の結論
「f はある開区間の上でリプシッツ連続である」
を素直に眺めてみると
”リプシッツ連続という関数の族で、
どんな条件設定をしたら、この結論が導けるのだろうか”
という疑問がわいてくる
有理数の集合Q上でリプシッツ不連続のような関数を、
病的関数と呼ぶとすれば
病的関数は、排除する条件設定でなければならない
だから、素直に
「リプシッツ不連続な集合が、R中で稠密でない」が浮かぶ
「R中で稠密でない」は、
言い換えると
どこかの区間(開閉問わず)で、
リプシッツ不連続な点を含まないと
できるってこと
で、定理1.7の条件「R-Bf が内点を持たない閉集合の高々可算和」
これじゃ、条件足りないねと
「R中で稠密でない」を入れないとね
条件足りないのに、証明しちゃったの?
それ、”リプシッツ連続という関数の族で、一致の定理を証明しました”と
そういう話になっちゃうってことです
一致の定理を証明するなら、正則条件は外せない
と同様に、
111:「f はある開区間の上でリプシッツ連続である」を証明するためには 「リプシッツ不連続な集合が、R中で稠密でない」という条件 これは、外せない あるいは、それと等価な条件を含む設定でないと まずいよと だから、 「もともとの定理1.7の設定(結論と条件)が適切でない」 ってことだな
112:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 11:17:00.40 Zx878fDB.net
>>95
案の定
なんにも書けないのか?
じゃ、
おれは、”極限どころか∀、∃の意味が理解”できてない
おまえは、>>81-82のε‐δになんにも言えないレベルだと
それでいいな
100年ROMってろっ
なにか気の利いた数学のことが書けるようになってから、カキコしな
113:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 11:27:04.17 Zx878fDB.net
>>82
>ひじょうーに、良い質問ですね(by スレ主(^^ )
>その考察正しいです
もう大体わかっているとおもうが
重要キーワードが、近傍(下記)です
イプシロン-デルタ論法は、暗黙の前提で、ある点aの近傍を考えているんだ
だから、εもδも、小さい方を考えているってこと
”∀ε> 0”(>>85)で、小さい方には∀が有効だが、大きい方には∀が有効でない(近傍から出ることは考えてないってこと)
それが、私のいまの答えです
URLリンク(ja.wikipedia.org)(%E4%BD%8D%E7%9B%B8%E7%A9%BA%E9%96%93%E8%AB%96)
近傍 (位相空間論)
数学の位相空間論周辺分野でいう近傍(きんぼう、英: neighbourhood, neighborhood)は位相空間の基本概念の一つで、直観的に言えば与えられた点を含む集合で、その点を少しくらい動かしてもその集合から外に出ないようなものをいう。
近傍の概念は開集合と内部の概念と密接な関連がある。
目次
1 定義
2 距離空間における近傍
3 例
4 近傍系の定める位相
5 一様近傍
6 穴あき近傍
114:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 11:49:02.08 Zx878fDB.net
>>103 補足
簡単な例として
>>86のyoutubeな
これ、不連続な関数の例を挙げているのだが
不連続な点以外の連続な点を考えるとき
連続をすんなり言おうとすれば
y側でとるεは、不連続な部分を含まない小さい近傍にすべきだと
不連続な部分を含む大きな近傍にすると、処理がややこしいから
115:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 17:38:39.98 Zx878fDB.net
>>104
補足
URLリンク(ja.wikipedia.org)
連続写像
(抜粋)
目次
1 定義
1.1 開集合を用いた定義
二つの位相空間 X, Y の間の写像
f: X → Y
が連続であるとは、
任意の開集合 V ⊆ Y に対しその逆像
f^{-1}(V)= { x∈ X | f(x)∈ V }
が X の開集合となるときに言う。
従って、f は集合 X, Y の間の写像(であってそれらの位相の元の間の写像ではない)にも拘らず、
f の連続性は用いられている X, Y それぞれの位相に依存する性質であることに注意すべきである。
(引用終わり)
注:f^{-1}(V)は、fの逆像(逆関数)である(まあ原文見てください)
さて、いまの場合
単純に
f: R → R として
ある点 x=aでの連続を考えると
上記定義ままでは、全 開集合 V ⊆ Y を言っているが、
ある点 x=a に限定すれば、
点 x=a のごく近傍だけを見れば
それで足りるんだ(^^
でも、定義として”点 x=a のごく近傍だけを見れば
それで足りるんだ”と書くのも、
数学的美観から見て如何かということかな?と
(”「ごく近傍」ってなんだ! ちゃんと定義しろ” なんてツッコミが予想されるし)
普通は、点 x=a の連続を定義して、
そこから、全Rに至るというのが、
私ら素人分かりする流れですけどね(^^
(「全 開集合 V ⊆ Y を見ろ」とか言われても、
>>54 のID:s/HOWja1さん言われるように、
かえって分かりにくい と思いますし、
実務としては、「点 x=a のごく近傍だけで良いでしょ」なんです(^^ )
まあ、ここらは、時代の数学の天才たちが、100年くらいかけて磨き上げて来た定義ですからね
116:現代数学の系譜 雑談 古典ガロア理論も読む
2018/1
117:1/02(金) 17:40:51.52 ID:Zx878fDB.net
118:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 17:57:14.97 Zx878fDB.net
>>105
一言
連続写像
1.1 開集合を用いた定義
を引いたのは
こっちの方が
”点 x=a のごく近傍だけを見れば
それで足りるんだ”
をご納得しやすいと思ったから
119:132人目の素数さん
18/11/02 18:17:17.46 d/y3aYM6.net
>>100
> 先頭からある有限個nを取り除いても、残りのしっぽは可算無限長の箱の列で、変化なし
これは決定番号は∞になることはないということだからスレ主の主張とは真逆のこと
スレリンク(math板:124番)
> 決定番号は∞まで可能性があるから、
スレ主の主張は決定番号が∞になるということであって先頭からある有限個nを取り除くと
nは有限値でもいくらでも大きくできるから残りのしっぽがなくなるということですよね
以下の例でも(***)はスレ主の主張そのままでしょう?
有限数列全体から選んだ二つの数列のしっぽに項がすべて0である無限数列を
加えて無限数列にする
この二つの数列のしっぽが一致する確率は有限数列の項数はいくらでも大きくできるので0 (***)
一方で項数(= 決定番号 - 1)が∞であるということは無限数列であるということだが
無限数列は有限数列全体の中には存在しない
有限数列全体の中から無限数列を選ぶ確率は0
120:132人目の素数さん
18/11/02 18:39:52.70 g1ATM1tF.net
いつでもそうだがスレ主は根本が解ってない
だからいつも頓珍漢なことを言う
典型的なトンデモ
121:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 19:55:01.63 iLcpJ6Th.net
>>108
ちょっと違うな
1)可算無限長の数列が二つあって
その二つの列を先頭から比較して、一致する確率はゼロ(理由の説明は省略)
2)次ぎに、先頭からn個までは異なるが、n+1個目からあと無限個の箱の数が一致する確率は?
n+1個目からあと無限個の箱の列と同じことだから、これも一致する確率はゼロ(理由の上記に同じ)
QED
122:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 19:56:47.11 iLcpJ6Th.net
>>110 補足
その二つの列を先頭から比較して、一致する確率はゼロ(理由の説明は省略)
↓
その二つの列を先頭から比較して、全部が一致する確率はゼロ(理由の説明は省略)
”全部が”ってことな
で、nは有限の自然数な
123:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 19:58:01.75 iLcpJ6Th.net
>>110 訂正
(理由の上記に同じ)
↓
(理由は上記に同じ)
124:132人目の素数さん
18/11/02 20:01:34.37 g1ATM1tF.net
>>110
それは数列全体の集合から無作為に2元選んだ時の話であって、時枝記事とは何の関係も無い。
そんなだから「お前は一体何を批判した気になっているのだ?」と言われてしまうんだよ。
125:132人目の素数さん
18/11/02 21:16:49.45 d/y3aYM6.net
>>110
>>113にも書いてあるが決定番号を求めるには選んだ無限数列が
属する同値類の代表元と比較しなくてはいけない
> 可算無限長の数列が二つあって
では二つの数列が同じ類に属することが保証されない
>>108の場合
> 有限数列全体から選んだ二つの数列のしっぽに項がすべて0である無限数列を
> 加えて無限数列にする
ここで作った二つの無限数列は同じ類に属するので決定番号を求めることができる
126:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 22:11:30.97 iLcpJ6Th.net
>>113-114
時枝記事が出たのが、2015年10月だった
このスレで取り上げたのが、2015年11月だったかな
あれから、3年
多分、当時数学科に居た1年生が、いま4年生
彼らは、おそらく正しい理解に達したろうと思う
あんたたち進歩ない
127:132人目の素数さん
18/11/02 22:41:28.90 d/y3aYM6.net
>>115
定義に書いてあるじゃないか
> 4)二つの数列において、ある番号mから先の数列しっぽが一致するとき、mを決定番号と呼ぶ
決定番号の定義から「ある番号mから先の数列しっぽが一致するとき」だから
m個目以降が一致する確率は1
決定番号を求めるにはしっぽが一致するまで比較する数列を選び直してよい
代表元の中にはかならずしっぽが一致する数列が存在する
128:132人目の素数さん
18/11/02 22:59:35.52 g1ATM1tF.net
問題はスレ主が定義という概念を理解しているかどうかだ
129:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/02 23:29:57.27 iLcpJ6Th.net
>>115
貴方たちが言っているのは、大体が代数の知識だが
確率論とか確率過程論の知識がからっぽ
数学科生だと、確率論が必修かどうか知らないが
もし、必修でなくとも、友人とか先輩とか院生とか教官とか
確率論や確率過程論に詳しい人から、
時枝記事に対する正しい見解を聞く機会があると思う
確率論とか確率過程論の知識が欠落している人には
時枝記事に対する正しい見方は難しいのかもしれないね
私には、あなた方に、確率論とか確率過程論を、ここで講義する�
130:ヘも時間も余白もない わるいね(^^
131:132人目の素数さん
18/11/03 00:02:33.42 X4m8g/3Q.net
っぷ
132:132人目の素数さん
18/11/03 01:15:44.58 g5NrFvcK.net
>>118
シンプルにするために時枝記事を極限の簡単な場合に書き換えると
「確率に詳しい」スレ主がやっている計算は
[問]
実数aに収束する無限有理数列がある
数列のしっぽの無限個の項の値は(a - ε, a + ε)に含まれるか?
[スレ主の答え >>94 >>110 ]
有理数全体の集合の濃度は可算無限
可算無限長の有理数列があって先頭から値を比較していくと
値が(a - ε, a + ε)に含まれる確率は0
よって数列のしっぽの無限個の項の値が(a - ε, a + ε)に含まれる確率は0
133:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 06:57:21.12 yJeqFxmc.net
>>119
これは、”ぷふ”さん、お久しぶりです
お元気そうでなによりです \(^^/
134:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 07:50:47.73 yJeqFxmc.net
>>120
[問]
実数αに収束する無限数列を作る
ある人が、数直線上で点を選んで収束する点列anを作ったとする
(点を選ぶために、選択公理は仮定する)
いま、人は、選んだ数anが、無理数か有理数かを判定する一般的な手段を持たない
だから、選んだanが、無理数か有理数かを知らずに選んだとする
何十年後かに、任意の数が、無理数か有理数かを有効に判定する定理が見つかり、選んだanを調べたとする
さて(α - ε, α + ε)の区間において、
1)数列anに、無理数が含まれる確率は1(多分これは皆さん同意だろう)
2)数列anに、有理数が含まれる確率は0?(コルモゴロフ流確率論に乗るかどうかは別として、多くの人の直観は0だろう)
[スレ主の答え]
時枝先生は、ここ「数列anに、有理数が含まれる確率は1」みたいなことを言っているじゃないですかね?
もっともらしい理屈(数理? パラドックス?)を構築して
でも、その理屈は、現代数学の正統確率理論からみたら、まゆつばものだと(^^
135:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 10:16:31.89 yJeqFxmc.net
>>82
>まあ、これ日本の数学科での”イプシロン-デルタ論法”教育の欠陥のような気がする
>要するに、日本の数学科ってのは、数学の心を語らないんだ。そういう情緒を排除して、ロジック1本勝負みたいな
以前、下記みたいな質問があって、これにうまく答えられなかった
それはいまも、あまり変わりないが
「なぜ”逆写像”を使う?」というところが、”イプシロン-デルタ”の心の説明とつながるかなと(^^
スレリンク(math板:626番)-627
現代数学の系譜 工学物理雑談 古典ガロア理論も読む50
(抜粋)
626 返信:132人目の素数さん[sage] 投稿日:2018/02/09(金) 22:10:57.11 ID:Wn/Os2G7
連続が単に定義であるなら、「”開写像かつ逆写像が開”を連続である」ではなぜいけないんだろう
元の連続の定義よりより強くていいと思うんだけど
(引用終り)(一部修正)
つづき
136:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 10:17:21.83 yJeqFxmc.net
>>123
つづき
これ(「なぜ”逆写像”を使う?」)
(>>86-87より)
youtube URLリンク(youtu.be) 【大学数学】ε-δ論法(関数の連続性)【解析学】 予備校のノリで学ぶ「大学の数学・物理」2018/05/04 に公開
で、この動画の図を借りて、
x=aで不連続を式で表現するために
g(x)を連続関数として、
一般性を失わずに単調増加関数とします
(この方が、話が簡単なので)
f(x)
= g(x) 但し x<=a
= g(x)+d 但し a< x
ここに、dはある正の実数とします
(まあ、要するに、x=aでギャップdを作りましたと)
で、これを、ε-δ論法に当てはめると
1)x=aから、y軸の点g(a)を見つけます
2)ε<dとなるように(ギャップに入るよう)、小さくεを考えると
3)x=a+δで、δを小さくしても、
lim δ→0 |f(a+δ)-f(a)| >= d
(|f(a+δ)-f(a)|は、ギャップdより小さくできない)
4)開集合の”逆写像”でいうと、
ε<dとなるとき(下記 f^(-1)は、逆関数を表わす)
f^(-1) :(f(x)-ε,f(x)+ε)→(a-δ,a+δ]
(
137:半開区間なので、開集合ではない) となります つづく
138:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 10:18:23.68 yJeqFxmc.net
つづき
上記4)をまとめると、関数が不連続でギャップdを持つとき
「y軸の方から見て、ギャップdを意識してεを小さくして、
dに嵌まる開集合(y - ε,y + ε)の逆像が、開集合ではない」
とできる
もっと俗に言えば
「不連続なら、yの方から見る像を拡大する(εを小さくする)と、かならずギャップdが見える」と
それが、
「y軸の方から、逆像で見る」ことの意義だろうと
で、これを”ε-δ”に翻訳すると、
まずy軸の方でεを決める。
その逆像として、( a - δ,a - δ)が取れるかどうかを見る。
取れなければ、アウト
εを任意に小さくしても、必ず( a - δ,a - δ)が取れるならOK(連続)だと
(だから、先に”任意のεありき”なのだと)
以上です
139:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 10:34:05.90 yJeqFxmc.net
>>125 蛇足
1)コンピュータプログラム風に言えば
最初は、点x=aを決めて、
次ぎにy側にf(a)を取るという手順になる
そして、f(a)±εを考えるという流れ
これ、最初の方を結構省略して説明してあるよね
2)ギリシャ文字として、δが先で英文字dに対応、εが後英文字でeに対応している
この順で、変数xにδを使い、変数yにεを使う
これも、うろ覚えで混乱しないように、しっかり覚えておいた方がいいだろう(これ自戒を込めて)
以上
140:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 11:29:39.42 yJeqFxmc.net
34分なので、1.5倍速で見たけど
途中であきらめた(^^;
URLリンク(www.youtube.com)
eが超越数であることの証明 (34分)
予備校のノリで学ぶ「大学の数学・物理」
2018/10/31 に公開
高校数学のレベルで理解できる非常に面白い証明です
コメント
トラファルガーρ
2 日前
確かに数3までで習う計算しか使ってないけど、難しすぎる…w
141:132人目の素数さん
18/11/03 12:32:38.24 ft/1PbC2.net
ヨビノリと鈴木氏はコメント欄で突っ込んだことがあるけどスルーされた
142:学術
18/11/03 12:32:39.48 ndho98Qn.net
無限個を計測して頭に入れただけでわかるのがおかしい。
人生体験から類推すべきなのに。
143:132人目の素数さん
18/11/03 12:51:00.31 ft/1PbC2.net
まぁ定理1.7とかいう件の証明もどきはまともな定義の上に立っていないと思われ
144:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 13:13:38.61 yJeqFxmc.net
>>128-130
どもです(^^
145:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 13:33:59.81 yJeqFxmc.net
>>124 訂正
誤; f^(-1) :(f(x)-ε,f(x)+ε)→(a-δ,a+δ]
↓
正; f^(-1) :(f(x)-ε,f(x)+ε)→(a-δ,a]
だな(^^
146:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 14:33:15.34 yJeqFxmc.net
>>106-107
「点 x=a のごく近傍だけで良いでしょ」は、
やっぱ近傍系を用いた定義から理解するのが早いかも(^^
あと、下記引用に、
「後者は逆像ではなく像を使った言い換えになっている」とあるので、
順像を用いる定義もあるみたい
なので、(>>123より)「”開写像かつ逆写像が開”を連続である」は、明らかに、重複
(逆像か順像か、どちから片方で、いいでしょう)
URLリンク(ja.wikipedia.org)
連続写像
(抜粋)
1.3 近傍系を用いた定義
近傍系を用いた定義
近傍を用いて位相空間の一点における写像の連続性を定義することもできる。
位相空間 X 上で定義された写像 f: X → Y が一点 x において連続であるとは、像 f(x) の任意の近傍の f による逆像が再び x の近傍となること、即ち
∀ N∈ N _f(x) : f^{-1}(N)∈ M_x
が成立することを言う。
近傍系が上方集合(英語版)系であるという性質を用いれば、
∀ N ∈ N_f(x), ∃ M∈ M_x : M ⊂= f^{-1}(N)
∀ N∈ N_f(x), ∃ M∈ M_x : f(M) ⊂= N
などのように言い換えることもできる。
後者は逆像ではなく像を使った言い換えになっている。
言葉で言えば、
これはどんなに小さな近傍を選んでもそれに写される近傍が必ず見つけられる
ことを言っているのである。
(引用終り)
147:132人目の素数さん
18/11/03 14:39:00.77 X4m8g/3Q.net
どうやら最近近傍という言葉を覚えたようだ
逆に言うと、今まではそんな基本すら理解せずに数学板で放言してたということか
148:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 15:04:06.02 yJeqFxmc.net
>>133 補足
あと、近傍の補足例で
”εを小さい方は良いけど、
大きく広げる方は良くない例”
を思いついたので書く(^^
y=1/xを考える
(この関数は、原点0に極(発散点)を持つことを、注意しておく)
x=1で連続を言いたい
x=1のとき、y=1だ
そこで(y-ε,y+ε)で、
εを0.1とか小さくとってれば
問題なく、ε-δ論法に乗る
だが、εを1.1とか大きくすると
(y-1.1,y+1.1)となって
その逆像は、x軸全体
(-∞,+∞) (∵原点の極を跨ぐから)
となる
(正確には、原点0を除いた(-∞,0)& (0,+∞))
なので、
x=1で連続を言うのに、
εを原点の極を避けて小さく取るのはOKだが
一方、原点を含むような大きなεを取ると、
議論がややこしくなるだけ
(”(-∞,0)& (0,+∞)”でも開集合なので、
理論上、問題ないと言えるが、
x=1での連続をいうのに、
無神経に(不必要に)εを大きく取るのは、議論を混乱させるだけの不経済ということだろうと(^^ )
149:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 15:06:57.09 yJeqFxmc.net
>>134
おつです
正確には、近傍という言葉を覚えたのは、高校だが
この質問とか
なんで逆像?
の説明に、
”近傍という言葉を使うのが分り易い”というのに気付いたのは
最近だね(^^
150:132人目の素数さん
18/11/03 15:11:19.65 q46wxfwe.net
limsupは、>>61のpdfの50頁に
>sup{f(x) | 0 < |x - x0| < δ} はδ に関して単調増加なので
>δ → 0 とともに減少し,右辺の極限はR ∪ {±∞} の意味で確定する
と書いてあるのが答えですよね
151:132人目の素数さん
18/11/03 15:16:29.36 q46wxfwe.net
f:R -> R は写像,x0は実数として,
F:(0,∞) -> R∪{±∞} を F(δ) = sup 0<|x-x0|<δ f(x) と定義すると,
F(δ)はδについて必ず広義単調増加なので,
lim δ->0 F(δ) = inf δ> 0 F(δ)
が必ず成り立つ.すなわち
lim δ->0 sup 0<|x-x0|<δ f(x) = inf δ> 0 sup 0<|x-x0|<δ f(x)
が必ず成り立つ
よって、limsup x→x0 f(x) の定義には
lim δ->0 と inf δ> 0 のどちらを使ってもよい
これだけの話ですよね
152:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 15:24:53.89 yJeqFxmc.net
>>134
>逆に言うと、今まではそんな基本すら理解せずに数学板で放言してたということか
Y (^^
それ一応断りを、>>8を書いてあるよ(^^
「スレ主は、皆さんの言う通り、馬鹿であほですから、基本的に信用しないようにお願いします
大体、私は、自分では、数学的な内容は、筆を起こさない主義です
じゃ、どうするかと言えば、出典明示とそこからの(抜粋)コピペです
まあ、自分なりに、正しそうと思ったものを、(抜粋)コピペしてます
が、それも基本、信用しないように
数学という学問は特に、自分以外は信用しないというのが基本ですし」
ってこと
153:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 15:35:52.31 yJeqFxmc.net
>>137-138
レスありがとう
仰る通りですね(^^
それ質問者の>>81とか、>>54とか、>>52とか、>>47とかへの答えね
そして、(>>53より)例の定理の主さんは
定義1.1 で、「lim sup x→a g(x) := inf δ> 0 sup 0<|x-a|<δ g(x)」
なので、左辺を右辺で定義しているってことです
そのこころは、
”δ> 0, 0<|x-a|<δ”を後で使いたいよ
その準備ですよ、ということだね
154:現代数学の系譜 雑談 古典ガロア理論も読む
18/11/03 15:44:08.70 yJeqFxmc.net
>>13
155:5 ほんとに、中学生向け蛇足だが x=10^6 (俗世間では100万と呼ぶ) での連続を考えると 対応するyは y=1/(10^6) なので εを、例えば1/(10^7) (=1,000万分の1) と小さく取らなければ、原点y=0を跨ぐのでまずいことになると なので、どれだけ小さくとるべきかは、場合によるけれども 小さく取る方は、いくら小さくとっても、無問題だと
156:132人目の素数さん
18/11/03 16:29:19.81 ft/1PbC2.net
>>140
いや、そこが違うんだが。
157:132人目の素数さん
18/11/03 17:11:17.41 g5NrFvcK.net
>>122
> 時枝先生は、ここ「数列anに、有理数が含まれる確率は1」みたいなことを言っているじゃないですかね?
全然理解していないじゃないですか
>>120は実数に変えても同じです
[問]
実数aに収束する無限実数列がある
数列のしっぽの無限個の項の値は(a - ε, a + ε)に含まれるか?
[スレ主の答え >>94 >>110 ]
実数全体の集合の濃度は非可算無限
可算無限長の実数列があって先頭から値を比較していくと
値が(a - ε, a + ε)に含まれる確率は0
よって数列のしっぽの無限個の項の値が(a - ε, a + ε)に含まれる確率は0
[一般的な答え]
極限の定義より数列のしっぽの無限個の項の値は(a - ε, a + ε)に含まれる
[決定番号に関する問]
可算無限長の実数列Anを一つ選んだとする
Anとしっぽの無限個の項が一致する無限実数列Bnがある
有限数列を{an}としたときにn→∞の極限で{an}→Anになる場合
この無限数列のしっぽの無限個の項はBnと一致するか?
[スレ主の答え >>94 >>110 ]
(略) 確率は0
[一般的な答え]
(略) 一致する