18/10/28 05:58:31.87 Alga/Fek.net
xyz空間の球B:x^2+y^2+z^2=1の表面または内部に点Pをとる。
Pを通り方向ベクトル(1,2,0)に平行な直線lとBとの共有点を考えるとき、以下の問いに答えよ。
(1)lとBの共有点の個数を場合を分けて答えよ。
(2)共有点の個数が2個のときを考える。共有点の一方をS、他方をTとする。
P(x,y,z)とするとき、長さの積PS・PTをx,y,zで表せ。Pが表面上にあるときはP=Sとして考えよ。
(3)Bを平面x=u(-1≦u≦1)で切った切断面D_u上を点Pが動く。P(u,y,z)においてy^2+z^2の取りうる最大値Mをuで表せ。
さらにz=0のとき、積分 I_u = ∫[0→M] (PS・PT) dy をuで表せ。
(4)(3)で求めたI_uに対して定積分K = ∫[-1→1] I_u du を求め、さらに比の値K/(4π/3)を求めよ。