分からない問題はここに書いてね448at MATH
分からない問題はここに書いてね448 - 暇つぶし2ch167:132人目の素数さん
18/10/27 13:50:43.55 0lSGEQBN.net
>>161
(n^2-2n-6)(n-1)/6 をグラフ表示してみました。
URLリンク(i.imgur.com)

168:132人目の素数さん
18/10/27 14:00:54.93 BkDpmm6u.net
>>162
>>161は多項式にまでするために、部屋をn x (n+1)、宝を2個と特殊化したものです。
#nloc(m,n,k,l)は縦m、横nの部屋で横優先が部屋(k,l)で初めて宝を発見する場合で
#宝が置かれても縦優先に先を越されない部屋の数。
def nloc(m,n,k,l):
q,r = divmod(n*k+l,m)
return (n-q)*(m-k)+q-1-l + ((k-r) if r > k else 0)
#nwin(m,n,c)は部屋が縦m、横n、宝がc個で横優先が勝つ宝の配置の数
def nwin(m,n,c):
return sum(binomial(nloc(m,n,k,l),c-1) for k in range(m) for l in range(n) if k*(n-1)<l*(m-1))
縦優先は縦横を替える。

169:132人目の素数さん
18/10/27 15:11:26.67 upNvrDEa.net
>>164
レスありがとうございます。
コードは読めないのですが、
部屋数から宝部屋の組合せを列挙してどちらが縦横どちらが先にみつけるかを探る手続きで必要な計算式をプログラムが絞りだしてくれるという理解でいいのでしょうか?

170:132人目の素数さん
18/10/27 16:24:46.83 2oyqegeD.net
>>165
いえ、計算式そのものです。数式で書けば
nwin(m,n,c) := Σ[(k,l)∈{0,…,m-1}×{0,…,n-1}, k*(n-1)<l*(m-1)] binomial((n-q)*(m-k)+q-1-l + (k-r)δ(r > k), c-1)、
ただし、n*k+lをmで割った商をq、余りをrとし、δ(P)をPが真なら1、偽なら0である関数とする。

171:132人目の素数さん
18/10/27 17:00:25.68 jxMEHoZP.net
>>159
例えば→√2を考えたい時、qの近づけ方は問題ないんでしょうが、pの近付き方を、p_n→√2になるような有理数列p_n上で考えることは出来ないんでしょうか。
→0なんかも、実際に関数に0を入れるわけではなくギリギリまで近付けるように、p自身が√2を取れないのは、定義できないほどの大問題でしょうか。

172:132人目の素数さん
18/10/27 17:42:26.17 OAQWCVH9.net
>>60
スタート地点のポイントAに宝があると
ゲーム開始とともに同着でゲーム終了になるので除外する
宝がいくつあったとしても、P君とQ君のどちらかが先に
一つでも宝を見つけるとそこでゲーム終了となる
縦方向の探査をn、横方向の探査をn+1として
宝の個数をkと置くと、調査する全範囲は
{n(n+1)-1}-(k-1)=n(n+1)-kと考えられる
Ω={n(n+1)-k)|n≧2,n(n+1)-1>k≧1}
■縦方向に探査をするP君の確率空間は
Ω={(i,j)|1≦i≦n,1≦j≦n(n+1)-k}から
#A=n{n(n+1)-k}-{n(n+1)-k-1}(n-1)
  =n(n^2+n-k)-{n(n^2-1)-k(n-1)-(n-1)}
  =n^3+n^2-kn-n^3+n+kn-k+n-1
  =n^2+2n-k-1
  
#Aは事象Aに含まれる要素の個数
■横方向に探査をするQ君の確率空間は
Ω={(i,j)|1≦i≦n+1,1≦j≦n(n+1)-k}から
#B=(n+1){n(n+1)-k}-n{n(n+1)-k-1}
  ={n(n+1)^2-k(n+1)}-{n^2(n+1)-kn-n}
  ={n^3+2n^2+n-kn-k}-{n^3+n^2-kn-n}
  =n^2+2n-k=n(n+2)-k
#Bは事象Bに含まれる要素の個数
■[n≧2,n(n+1)-1>k≧1]の条件下で以下の式が成立する
∴P(A)={n(n+2)-k-1}/{n^2(n+1)-kn}
∴P(B)={n(n+2)-k}/{n(n+1)^2-k(n+1)}

173:132人目の素数さん
18/10/27 17:47:25.88 OAQWCVH9.net
>>168
Ωの部分集合を事象と言う
Ω自身は全事象と言う
最初に探す方向を i
行または列が変わる時を j として
P君とQ君のうちどちらが先に宝を見つけるのかという
事象Aと事象Bを考える.
A={(i,j)| i または j が宝}
B={(i,j)| i または j が宝}

174:132人目の素数さん
18/10/27 17:50:10.27 upNvrDEa.net
>>168
別スレでは等確率とデタラメ書いてたよなぁ。
スレリンク(math板:87番)

読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。

175:132人目の素数さん
18/10/27 18:04:31.01 0lSGEQBN.net
>>168
すでに正解とPCでのカウントの照合が終わっているのに
読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。

176:132人目の素数さん
18/10/27 18:10:01.16 OAQWCVH9.net
別スレだって( ´,_ゝ`)

177:132人目の素数さん
18/10/27 18:12:30.45 0lSGEQBN.net
>>166
とすると、部屋数が増えたり宝が増えても数式として算出可能なのでしょうか?

178:132人目の素数さん
18/10/27 18:16:48.52 0lSGEQBN.net
>>172
なんだ、このスレでデタラメ書きつづけてたのかよw

179:132人目の素数さん
18/10/27 19:06:09.12 CcIMSnz3.net
>>152 , >>158
ご返答ありがとうございます。

180:132人目の素数さん
18/10/27 19:44:20.53 0/HwMd6z.net
>>167
もちろんそういう近づけかたを考えてもいいけど、その近づけかたを離散位相といってはいけない。
流石にこの程度の基本的な単語は正確に意味を確認するようにしないといかん。

181:132人目の素数さん
18/10/27 20:22:27.06 A93ydLot.net
>>175
>>152は無視してな
完全に寝ぼけてたわ

182:132人目の素数さん
18/10/27 20:46:19.01 2oyqegeD.net
>>173
すみません。発言がよくわかりません。
「数式として算出」とは? >>166は数式ではない?
ここでいう数式とは多項式などのΣのない形のものでしょうか?
「部屋数が増えたり」も、もともと部屋をn×(n+1)などとしていて大きさを変えられますよ?
宝の数が2以外でも(3なら3と)固定されていて部屋の形がn×(n+1)または(n+1)×nなら>>161を少し変えれば
Σのないnについての多項式が得られる、とは言えます。
念のため書いておくと
>>166は部屋の縦横、宝の数が任意だが、Σがある。
部屋の形がn×(n+1)または(n+1)×nとして適当に場合分けすることにより数式処理ソフトで
Σの計算できるようにした、そのコードが>>161

183:132人目の素数さん
18/10/27 21:43:17.58 dqzIYyC2.net
宝箱問題。申し訳ないのですが、プログラミングに詳しくないものでさっぱりです…
高校生にもわかるようにどなたか解説していただけませんか?(入試数学の解答のような形式であればありがたいです)

184:132人目の素数さん
18/10/27 22:12:53.07 xN+LO4jv.net
()>>173
可能だけど立式するのは結構な手間
Σを用いた式として立式して sagemath というソフトで簡略化して n の多項式にしたのが>>161
どう考えても面倒なので161さん以外の誰もやっていなかった
宝箱の数をkとして立式することは可能だろうけれども、
更なる面倒さに付き合ってくれる人がいなければここには書かれない
こんなとこでどうでしょうか。

185:132人目の素数さん
18/10/27 22:49:27.99 xN+LO4jv.net
sagemath はスマートフォンなどでも使うことができて、
僕も今初めて使うので適当ですが例えば>>161の最初の
P1の式(Σを含むもの)の簡略化などはiPhoneアプリでも以下のようにして行えました
アプリ起動して「+」ボタンで新しい式を入力するモ


186:ードにして var l,a,n,k = var('l','a','n','k') a=m/2 m=n+1 sum((m-1)*(m)-2*l-1, l,1,m-2) + sum(sum((m-1-k)*(m-k)+k-1-l, l,k,2*k) + sum((m-1-k)*(m-k)+3*k-2*l-1, l,2*k+1,m-2), k,1,a-2) + sum(sum((m-1-k)*(m-k)+k-1-l, l,k,m-2), k,a-1,m-2) と入力して「evaluate」ボタンでこの式を評価(簡略化) https://i.imgur.com/4bpYZLg.jpg



187:132人目の素数さん
18/10/27 23:11:22.16 eXgFaU/v.net
弥勒(僧)とシュリニヴァーサ・ラマヌジャンはどっちの方が賢いですか?

188:132人目の素数さん
18/10/27 23:15:15.57 NcmCS8ch.net
c のプログラムが無かったようなので 宝二つ、m×(m+1)型(m=1~69)を作ったので参考にあげておきます。
URLリンク(codepad.org)
少し説明を加えておくと、マスに1から順に番号をあたえます。
配列P[c]には、c番目 のマスをPは何番目に調査するか
配列Q[c]には、c番目 のマスをQは何番目に調査するか を入れておきます。
i番目とj番目のマスに宝があるとき、P[i]とP[j]を比べて小さい方の値で、Pは宝を発見し、
Q[i]とQ[j]を比べて小さい方の値で、Qは宝を発見します。
この値を比べ、PとQどちらが早く発見したかを判定すると言うだけのものです。
縦、横のマスの数の変更や、宝の数の変更も難しくないと思うので、興味がある方はどうぞ。
(本当は、配列は一つで十分なんだけど、可読性や対称性を考えて書いておきました)

189:132人目の素数さん
18/10/28 05:58:31.87 Alga/Fek.net
xyz空間の球B:x^2+y^2+z^2=1の表面または内部に点Pをとる。
Pを通り方向ベクトル(1,2,0)に平行な直線lとBとの共有点を考えるとき、以下の問いに答えよ。
(1)lとBの共有点の個数を場合を分けて答えよ。
(2)共有点の個数が2個のときを考える。共有点の一方をS、他方をTとする。
P(x,y,z)とするとき、長さの積PS・PTをx,y,zで表せ。Pが表面上にあるときはP=Sとして考えよ。
(3)Bを平面x=u(-1≦u≦1)で切った切断面D_u上を点Pが動く。P(u,y,z)においてy^2+z^2の取りうる最大値Mをuで表せ。
さらにz=0のとき、積分 I_u = ∫[0→M] (PS・PT) dy をuで表せ。
(4)(3)で求めたI_uに対して定積分K = ∫[-1→1] I_u du を求め、さらに比の値K/(4π/3)を求めよ。

190:132人目の素数さん
18/10/28 06:38:52.61 Alga/Fek.net
n≧3とする。
次の和を求めよ。
Σ[k=1,2,...,n-1] {(n,k)・(n+1,k-1)}

191:132人目の素数さん
18/10/28 06:50:48.68 Alga/Fek.net
サイコロを振り、出た目に応じて点Pを動かす。最初点Pは(0,0)にある。
点Pが(a,b)にあるとき、偶数の目が出たら(a+1,b+1)に移動させ、奇数の目が出たら(a+1,b-1)に移動させる。
このとき、以下の事象が起こる確率を求めよ。
(1)Pが半直線y=x(x≧1)の上に乗る。
(2)Pが直線y=2x+1の上に乗る。
(3)m,nを整数の定数とし、Pが半直線y=mx+n(x≧1)の上に乗る。必要があればm,nの値に応じて場合分けして答えよ。

192:132人目の素数さん
18/10/28 07:43:46.81 GWXw/AMj.net
>>178
レスありがとうございました。
多項式で与えられたので他のソフトでも>163のように
簡単にグラフ化できました。
そういう意味で数式と書いたつもりでした。

193:132人目の素数さん
18/10/28 11:54:19.95 F02xc/t9.net
>>183
いつもcのコードありがとうございます。
このコードだと縦横マスを増やすのは容易でも、宝の数を増やすには for loopを
for(i=1,Pwin=Qwin=Draw=0;i<mn;i++)for(j=i+1;j<mn;j++) for(k=j+1;k<mn;k++) for(l=k+1;l<=mn;l++)
という具合に増やす必要がありますよね?

194:132人目の素数さん
18/10/28 14:34:09.32 uih2KRuT.net
そんな感じですね。細かいところですが、少し修正を施すと、
for(i=1,Pwin=Qwin=Draw=0;i<mn-2;i++)for(j=i+1;j<mn-1;j++) for(k=j+1;k<mn;k++) for(l=k+1;l<=mn;l++)
で、空回りを回避してます。
もし、このアルゴリズムで、宝の数を一般数化するなら、i,j,k,...の変数を配列にしてループにいれるか、
再帰関数化するか等の方がスマートですが、二つで固定なら、提示したような感じがシンプルですね。
しかし、宝の数可変を前提にプログラムを組むなら、別の方策を取ります。
Qは時刻 c に最初の宝を見つけるので、
・Pの宝の発見時刻が全てcより大きい → Qの勝ち
・Pの宝の発見時刻にcを含み、残りは全てcより大きい → 引き分け
・それ以外 → Pの勝ち
です。
Qは、時刻cに、マスcを調査するので、マスc+1、c+2、...の中に、P[x]>c を満たす
マスがいくつあるかをあらかじめカウントし、テーブル化すれば、あとは、
二項係数の積の和だけの、プログラムとなると思います。

195:132人目の素数さん
18/10/28 14:34:38.18 n8pAFAJX.net
>>185
m+1≧n≧1 のとき
Σ[k=1,n] C(n,k) C(m,k-1) = C(m+n,n-1)
∵ (1+x)^n (1+x)^m を展開したときの x^(n-1) の係数だから。
Σ[k=1,n-1] C(n,k) C(n+1,k-1) = C(2n-1,n-1) - C(n+1,2)

196:132人目の素数さん
18/10/28 14:41:09.62 n8pAFAJX.net
>>182
蝉「おまえさ、人としじみのどっちが偉いか知ってるか?」
伊坂幸太郎「グラスホッパー」角川文庫 (2007)

197:132人目の素数さん
18/10/28 18:59:43.28 GWXw/AMj.net
>>189
部屋の数=mn、宝の数trでmnCtr個の組み合わせを返すサブルーチンが必要になって、ここが処理のボトルネックになるんじゃないかと思うのですが。

198:132人目の素数さん
18/10/28 20:19:07.22 WEdrppmC.net
数学とはなんでしょうか?
何が数学の本質なんでしょうか?
論理的な体系の構築? 定理の創出?

199:132人目の素数さん
18/10/28 20:30:37.13 x624ZJMX.net
>>161の若干の一般化とその導出を備忘録的に書いておきます。
>>60
まず、部屋を探る順番が一般の場合を考える。
部屋がNあり、その集合をRとする。A君、B君が探る順番を表わす全単射写像をそれぞれf,gとする:
f,g: R→{0,1,…,N-1} (順番は0から始まるとする。)
部屋自体の位置はなんら答えに影響しない。
σ=g・f^{-1} と置くと、σは{0,1,…,N-1}の置換。(・は写像の合成)
A君がi番目に探る部屋はB君がσ(i)番目に探る部屋ということ。
以下、「A君がi番目に探る部屋」のことを「部屋i」ということにする。
求めたいのは、「A君がB君よりも早く宝を見つける宝の配置の数」であるが、宝の数をcとすると、それは
 Σ[σ(i)>i] binomial(#{j| j>i, σ(j)>i}, c-1) (0≦i,j≦N-1、binomialは二項係数)
である。
なぜか?
「A君が初めて宝を見つける部屋(部屋iとする)」で場合分けしよう。
(つまり部屋0~i-1には宝がなく、部屋iに宝がある場合)
部屋iはB君がσ(i)番目に探る部屋だからσ(i)>iでないと
少なくともB君はA君よりも前か同時に部屋iで宝を見つける
(B君はその前に別の部屋で宝を見つけることもある)ことになりA君は勝てない。
したがって、σ(i)>iが必要。
残りのc-1個の宝は部屋i+1~N-1にあるが、宝がある部屋を部屋jとすると、
やはりσ(j)>iでないといけない。逆に全部の宝でそうであればA君が勝つ。
よって


200:、残りのc-1個の宝が置かれてもいい部屋の数は#{j| j>i, σ(j)>i}だけあり、 全部そこに置かれる場合はbinomial(#{j| j>i, σ(j)>i}, c-1)通り。 したがって、上記のようになる。 続く



201:132人目の素数さん
18/10/28 20:31:26.72 x624ZJMX.net
>>194
続き
部屋が縦m、横nで、A君は横1行を探し終えたらすぐ下の1行に移り、
B君は縦1列を探し終えたらすぐ右の1列に移るという場合を考える。
つまり、m=4,n=3の場合、A君は
0123
4567
891011
B君は
0369
14710
25811
という順番で探す。
このとき、σ=0,3,6,9,1,4,7,10,2,5,8,11。
一般には、σ(nk+l)=ml+k (0≦k≦m-1, 0≦l≦n-1)。
ここまでをPythonで表すと:
#二項係数。SageMathでは定義ずみ
def binomial(n,r):
from math import factorial as f
return f(n)//f(r)//f(n-r) if r>=0 and n-r>=0 else 0
#置換p、宝c個で勝つ宝の配置の数
def nwinperm(p,c):
N = len(p)
return sum(binomial(len([j for j in range(i+1, N) if i<p[j]]),c-1)
for i in range(N) if i<p[i])
#部屋が縦m、横nのときの置換
def rectperm(m,n):
return [m*l+k for k in range(m) for l in range(n)]
#部屋が縦m、横n、宝がc個で横優先が勝つ宝の配置の数
def nwinrect0(m,n,c):
return nwinperm(rectperm(m,n),c)
続く

202:132人目の素数さん
18/10/28 20:32:10.70 x624ZJMX.net
>>195
続き
部屋が縦m、横nの場合を考えているが、もう少し計算を進める。
#{j| j>i, σ(j)>i} をこの場合に具体的に表そう。
i,j (0≦i,j≦mn-1)をそれぞれ nk+l, nk'+l' (0≦k,k'≦m-1, 0≦l,l'≦n-1) とする。
σ(i)>i ⇔ lm+k>nk+l ⇔ (m-1)l>(n-1)k、
j>i ⇔ nk+l>nk'+l' ⇔ 「k=k' かつ l<l'」または「k<k'」、
σ(j)>i ⇔ l'm+k'>nk+l ⇔ l' + k'/m > (nk+l)/m [ここで nk+lをmで割った商をq、余りをrとすると]
   ⇔ l' + k'/m > q + r/m ⇔ 「q≦l'≦n-1 ただし l'=q, k'≦r を除く」
を使って
#{j| j>i, σ(j)>i} = #{(k',l')|『「k=k' かつ l<l'」または「k<k'」』かつ l'm+k'>nk+l}
に出てくる『「k=k' かつ l<l'」または「k<k'」』かつ l'm+k'>nk+lを満たす組(k',l')の数を求める。
k=k' かつ l<l'のとき σ(i)>iからlm+k>nk+lだからl'm+k'>nk+lは常に成り立つので、l<l'≦n-1でn-1-l個。
k<k' のとき l'm+k'>nk+l ⇔ 「q≦l'≦n-1, k<k'≦m-1 ただし l'=q, k<k'≦r を除く」だから
(n-q)(m-1-k) - (r-k)δ(r>k)個、ただしδ(P)はPが真なら1、偽なら0である関数。
よって、#{j| j>i, σ(j)>i} = (n-1-l) + (n-q)(m-1-k) - (r-k)δ(r>k)。
したがって、求める数は
Σ[0≦k≦m-1, 0≦l≦n-1, (m-1)l>(n-1)k] binomial((n-1-l) + (n-q)(m-1-k) - (r-k)δ(r>k), c-1)。
これを使ったPythonコード:
#nloc(m,n,k,l)は縦m、横nの部屋で横優先が部屋(k,l)で初めて宝を発見する場合で
#宝が置かれても縦優先に先を越されない部屋の数。
def nloc(m,n,k,l):
q,r = divmod(n*k+l,m)
return (n-1-l) + (n-q)*(m-1-k) - (r-k if r > k else 0)
#部屋が縦m、横n、宝がc個で横優先が勝つ宝の配置の数
def nwinrect1(m,n,c):
return sum(binomial(nloc(m,n,k,l),c-1) for k in range(m) for l in range(n) if (m-1)*l>(n-1)*k)
続く

203:132人目の素数さん
18/10/28 20:34:35.87 x624ZJMX.net
>>196
続き
部屋がm×(m+1) (n=m+1) のとき。
(m-1)l>(n-1)k ⇔ 0≦k≦m-2 かつ k+1≦l≦m。
(nk+l)/m = k + (k+l)/m より k+l<mのときq=k,r=k+l、k+l≧mのときq=k+1,r=k+l-m。
r>k (k+l<m)とr≦k (k+l≧m)とに分けるように場合分けをする:
①0≦k≦[(m-1)/2], k+1≦l≦m-k-2 のとき r>k、
②[(m+1)/2]≦l≦m-1, m-1-l≦k≦l-1 または ③l=m, 0≦k≦m-2 のとき r≦k。
m=6のとき
×①①①①②③
××①①②②③
×××②②②③
××××②②③
×××××②③
×××××××
m=7のとき
×①①①①①②③
××①①①②②③
×××①②②②③
××××②②②③
×××××②②③
××××××②③
××××××××
後はΣの計算。>>60に合わせるとQ君がA君の立場でmが>>60でのn。
#以下 SageMathコード
,var m,n,l,k,q,r,c
T2 = (n-1-l) + (n-q)*(m-1-k)
T1 = T2 - (r-k)
#mが奇数の場合:
Q1 = (sum(sum(binomial(T1.subs({n:m+1,q:k,r:k+l}),c-1), l,k+1,m-k-2), k,0,(m-1)/2-1)
+ sum(sum(binomial(T2.subs({n:m+1,q:k+1,r:k+l-m}),c-1), k,m-1-l,l-1), l,(m+1)/2,m-1)
+ sum(binomial(T2.subs({n:m+1,l:m,q:k+1,r:k}),c-1), k,0,m-2)
).subs({m:n,c:2}).simplify_full().factor()
#mが偶数の場合:
Q2 = (sum(sum(binomial(T1.subs({n:m+1,q:k,r:k+l}),c-1), l,k+1,m-k-2), k,0,m/2-2)
+ sum(sum(binomial(T2.subs({n:m+1,q:k+1,r:k+l-m}),c-1), k,m-1-l,l-1), l,m/2,m-1)
+ sum(binomial(T2.subs({n:m+1,l:m,q:k+1,r:k}),c-1), k,0,m-2)
).subs({m:n,c:2}).simplify_full().factor()
def Q1st(x):
return (Q1 if mod(x,2) == 1 else Q2).subs({n:x})
続く

204:132人目の素数さん
18/10/28 20:36:18.50 x624ZJMX.net
>>197
続き
部屋がm×(m-1) (n=m-1) のとき。
(m-1)l>(n-1)k ⇔ 1≦l≦m-2 かつ 0≦k≦l。
(nk+l)/m = k + (l-k)/m より q=k,r=l-k。
r>k (l>2k)とr≦k (l≦2k)とに分けるように場合分けをする:
①0≦k≦[(m-3)/2], 2k+1≦l≦m-2 のとき r>k、
②1≦k≦[(m-3)/2], k≦l≦2k または ③[(m-1)/2]≦k≦m-2, k≦l≦m-2 のとき r≦k。
m=7のとき
×①①①①①
×②②①①①
××②②②①
×××③③③
××××③③
×××××③
××××××
m=8のとき
×①①①①①①
×②②①①①①
××②②②①①
×××③③③③
××××③③③
×××××③③
××××××③
×××××××
後はΣの計算。>>60に合わせるとP君がA君の立場でmが>>60でのn+1。
#mが偶数の場合:
P1 = (sum(sum(binomial(T1.subs({n:m-1,q:k,r:l-k}),c-1), l,2*k+1,m-2), k,0,m/2-2)
+ sum(sum(binomial(T2.subs({n:m-1,q:k,r:l-k}),c-1), l,k,2*k), k,1,m/2-2)
+ sum(sum(binomial(T2.subs({n:m-1,q:k,r:l-k}),c-1), l,k,m-2), k,m/2-1,m-2)
).subs({m:n+1,c:2}).simplify_full().factor()
#mが奇数の場合:
P2 = (sum(sum(binomial(T1.subs({n:m-1,q:k,r:l-k}),c-1), l,2*k+1,m-2), k,0,(m-3)/2)
+ sum(sum(binomial(T2.subs({n:m-1,q:k,r:l-k}),c-1), l,k,2*k), k,1,(m-3)/2)
+ sum(sum(binomial(T2.subs({n:m-1,q:k,r:l-k}),c-1), l,k,m-2), k,(m-1)/2,m-2)
).subs({m:n+1,c:2}).simplify_full().factor()
def P1st(x):
return (P1 if mod(x,2) == 1 else P2).subs(n=x)
以上、整理して少し異なったけど>>161の導出でした。

205:132人目の素数さん
18/10/28 20:51:31.12 aWEG2qvY.net
>>198
P1 == 1/24*(6*n^3 + 20*n^2 - n - 27)*(n - 1) # nが奇数のとき
P2 == 1/4*n^4 + 7/12*n^3 - 7/8*n^2 - 13/12*n + 1 # nが偶数のとき
Q1 == 1/24*(6*n^2 + 10*n - 3)*(n + 1)*(n - 1) # nが奇数のとき
Q2 == 1/24*(6*n^2 - 2*n - 5)*(n + 2)*n # nが偶数のとき
それだけ前置きやってkを含めた式が作れないのですか?

206:132人目の素数さん
18/10/28 21:10:22.97 x624ZJMX.net
>>199
「kを含めた式」って何?
あと>>178見て
宝の数が任意のものならΣが取れないでしょう。

207:132人目の素数さん
18/10/28 21:49:45.92 aWEG2qvY.net
kが任意でΣを含む高次方程式プリース

208:132人目の素数さん
18/10/28 21:57:24.16 WCFpjODS.net
論理的に考えて「最強」は存在しませんか?

209:132人目の素数さん
18/10/28 22:38:16.21 Z1Fuh7vT.net
私は何人かの方のコンピュータによる解法はすごいと思いました
正直、Pythonはわからないし、sagemathは数学そのものなのでまだ理解できていないので
読めたのはCだけですが…
久しぶりにまともなスレになった気がします

210:132人目の素数さん
18/10/28 22:46:21.43 aWEG2qvY.net
>>168
P(A)をP(B)で割ることによって
P君の勝つ数とQ君の勝つ数が導ける
P(A)/P(B)=(P君の勝つ数)/(Q君の勝つ数)
          {n(n+2)-k-1}/{n^2(n+1)-kn}
P(A)/P(B)=――――――――――
          {n(n+2)-k}/{n(n+1)^2-k(n+1)}

       =(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk}
          
        ∵[n≧2,n(n+1)-1>k≧1]
∵の範囲でnとkをいろいろと変えて見ることにより
様々な勝率が導ける
計算知能にそのまま入力するだけで通分と約分を
自動計算してくれるので試してごろうじろう
■Wolfram入力例
(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk},k=2,n=3

211:132人目の素数さん
18/10/28 22:56:23.58 Ebjnjc92.net
かわいそうな人がいるな。

212:132人目の素数さん
18/10/29 16:29:35.98 K6kqvvZ+.net
三角形ABCにおいて、
AからBCへ下した垂線をAD,
BCの中点をMとする。
BD > CDとすると
BD^2 - CD^2 = 2BC・MD を示せ。

213:132人目の素数さん
18/10/29 16:48:09.17 WCQIfvcO.net
>>206
中線定理やろ

214:132人目の素数さん
18/10/29 16:50:07.73 K6kqvvZ+.net
>>206
「垂線の定理」と言うらしい

215:132人目の素数さん
18/10/29 16:52:03.17 mtYrY7kH.net
左辺を因数分解すれば簡単

216:132人目の素数さん
18/10/29 16:53:18.72 fIbV3UU4.net
スイセンか
ナルシストやね

217:132人目の素数さん
18/10/29 17:00:59.61 K6kqvvZ+.net
BD-CD=2MD

BD-MD=CD+MD
こんな感じか

218:132人目の素数さん
18/10/29 17:57:30.68 5zZ9Wrnc.net
>>206
BD^2 - CD^2 = (BD+CD) (BD-CD)
= BC ( (BM+MD) - (CM - MD) )
= 2BC・MD
(∵ BM=CM )
特に垂線である意味がないし「垂線の定理」って何かの間違いでは?

219:132人目の素数さん
18/10/29 18:00:54.26 yQLOzO3v.net
左辺がAB


220:^2 - AC^2なら意味あるな。



221:132人目の素数さん
18/10/29 18:09:56.96 W1s3xJ8u.net
>>210
誰が面白い‥‥

222:132人目の素数さん
18/10/29 19:19:47.83 5zZ9Wrnc.net
>>213
AB^2 - AC^2 = (BD^2 + h^2) - (CD^2 + h^2) = BD^2 - CD^2 = ... = 2 BC・MD
なるほど

223:132人目の素数さん
18/10/29 20:28:17.47 WCQIfvcO.net
自然数a,b,cは以下の2つの等式を共に満たす。
a+b^2=c^3
a^2-b(b+c)=a+b+c
(1)このような(a,b,c)を一組求めよ。
(2)(1)で求めたもの以外に(a,b,c)の組が存在するなら、全て決定せよ。

224:132人目の素数さん
18/10/29 21:01:48.36 EbZkQmPV.net
>>216
Prelude> [(a,b,c)|a<-[1..100],b<-[1..100],c<-[1..100],a+b^2==c^3,a^2-b*(b+c)==a+b+c]
[(4,2,2)]

225:132人目の素数さん
18/10/29 21:19:32.81 EbZkQmPV.net
Prelude> [(b,c)|b <-[1..1000],c<-[1..1000],(c^3-b^2)*(c^3-b^2-1)==(b+c)*(b+1)]
[(2,2)]

226:132人目の素数さん
18/10/29 21:40:32.14 DqqH4kka.net
変な質問ですいません
最初にピタゴラスの定理を証明した人って、どういう発想で定理が正しいと考えたのでしょうか?直感でしょうか、経験的によく知られていたのでしょうか?

227:132人目の素数さん
18/10/29 21:53:25.38 Qhs7/BzP.net
ピタゴラスとエウクレイデスはどっちの方が賢いですか?

228:132人目の素数さん
18/10/29 21:59:50.45 t6V71XZu.net
>>216
a=-1,b=-3,c=2
a=0,b=-1,c=1
a=0,b=0,c=0
a=-1,b=1,c=0
a=4,b=2,c=2

229:132人目の素数さん
18/10/29 22:03:14.93 Cj4YfFKv.net
>>219
証明はどうだかわからないがピタゴラスが多いついたのはタイルを見て予想したと言われているらしい
直角二等辺三角形を敷き詰めると直角二等辺三角形の場合にはピタゴラスの定理が成り立つことがすぐにわかる
ピタゴラスはそこから直角三角形なら常に成り立つのではないかと考えたということのようだ

230:132人目の素数さん
18/10/29 22:03:18.99 Qhs7/BzP.net
リーマン予想を証明したいのですが、まずは何から勉強をした方が良いのでしょうか?

231:132人目の素数さん
18/10/29 23:00:58.41 TMKIolLb.net
証明した人に聞いてください
例えばAtiyahとかdeBrangeさんなど

232:132人目の素数さん
18/10/29 23:08:05.79 tvCSRcc2.net
風呂場の壁のタイルじゃないかね
URLリンク(www.wfg-bluebonnet.com)

233:132人目の素数さん
18/10/29 23:11:35.44 H845d6uJ.net
リーマン予想が証明されたとしたら、残りの他の全ての数学の未解決問題を自分一人で解決したい。
そのためにはやはり、数学の全分野だけでなく、物理学とか哲学とか計算機科学の全分野も究めないと無理なレベルでしょうか?

234:132人目の素数さん
18/10/29 23:33:15.93 Y5FWd7jd.net
とりあえず、二項定理くらいはわかるようになりましょうよ、ヒマラヤさん

235:132人目の素数さん
18/10/29 23:37:10.79 WCQIfvcO.net
>>221
証明は?

236:132人目の素数さん
18/10/29 23:39:31.99 t6V71XZu.net
b^2=c^3-a
a=c^3-b^2
a^2-b(b+c)=a+b+c
a^2-b^2-bc=a+b+c
a^2-c^3+a-bc=a+b+c
a^2-c^3-bc-b-c=0
(c^3-b^2)^2-c^3-bc-b-c=0
の整数解を求める

237:132人目の素数さん
18/10/29 23:44:55.83 EbZkQmPV.net
>>142
宝の数を変化させるコードをHaskellに移植してみた。
import Data.List
import Data.List.Split
m = 5 -- 縦マス(短軸)
n = 6 -- 横マス(長軸)
k = 5 -- 宝の数
q = [0..m*n-1]
matQ = chunksOf m q
matP = transpose matQ --行列を転置して
p = concat matP -- 配列に変換
combinations :: Int -> [a] -> [[a]]
combinations 0 _ = [ []


238:] combinations n xs = [ y:ys | y:xs' <- tails xs, ys <- combinations (n-1) xs'] treasure = combinations k q -- 宝の組み合わせ ip y = minimum $ map(\x -> elemIndices x p!!0) y -- 宝の、配列pでのindex列を求めて最小値を返す iq y = minimum $ map(\x -> elemIndices x q!!0) y idxp = map ip treasure -- 宝の組み合せで実行して idxq = map iq treasure p_q = zipWith (-) idxp idxq -- 差をとって大小判別 p1st = length $ filter (<0) p_q -- 短軸方向探索pが先に宝をみつける q1st = length $ filter (>0) p_q draw = length $ filter (==0) p_q main = do putStrLn $ "p1st = " ++ show p1st ++ ", q1st = " ++ show q1st ++ ", draw = " ++ show draw Prelude> :main p1st = 54036, q1st = 55469, draw = 33001



239:132人目の素数さん
18/10/29 23:56:48.49 xsxPk+Li.net
無限ホテルのパラドックス読んでてわからないことがあって、新しい宿泊客のために既存の客が部屋を一つづつずらすってあるけど、あれは何でそうなるの?
ネットで調べたけどそれらしい答えが無くて困ってる
無限ホテルが集合論のお話で、ホテルは可算無限集合、無限に居る宿泊客全員も可算無限集合で、どっちも無限としての大きさが合うから部屋は過不足なく用意されるって話だってところまではネットで読んだ
で、Wikipediaには順序数? の計算ルールが書いてあって、1+ωとω+1は違うってあったからこれが部屋移動の理由かと最初は思った
でも無限ホテルって無限人の来客があってもokってあるから、これってω+ωでどこに客をぶちこんでも意味変わらないなと
だからこの予想は違うと今は思ってる
この疑問のしっくり来る(理解できる)解説が見つからなくてずっとモヤモヤしてるので、誰か教えてくれるとありがたいです

240:132人目の素数さん
18/10/29 23:58:10.32 EbZkQmPV.net
-- バグ修正(行と列を間違えていた(._.)
import Data.List
import Data.List.Split
m = 5 -- 縦マス(短軸)
n = 6 -- 横マス(長軸)
k = 5 -- 宝の数
q = [0..m*n-1]
matQ = chunksOf n q
matP = transpose matQ --行列を転置して
p = concat matP -- 配列に変換
combinations :: Int -> [a] -> [[a]]
combinations 0 _ = [ [] ]
combinations n xs = [ y:ys | y:xs' <- tails xs, ys <- combinations (n-1) xs']
treasure = combinations k q -- 宝の組み合わせ
ip y = minimum $ map(\x -> elemIndices x p!!0) y -- 宝の、配列pでのindex列を求めて最小値を返す
iq y = minimum $ map(\x -> elemIndices x q!!0) y
idxp = map ip treasure -- 宝の組み合せで実行して
idxq = map iq treasure
p_q = zipWith (-) idxp idxq -- 差をとって大小判別
p1st = length $ filter (<0) p_q -- 短軸方向探索pが先に宝をみつける
q1st = length $ filter (>0) p_q
draw = length $ filter (==0) p_q
main = do
putStrLn $ "p1st = " ++ show p1st ++ ", q1st = " ++ show q1st ++ ", draw = " ++ show draw
>matrix.exe
p1st = 55469, q1st = 54036, draw = 33001

241:132人目の素数さん
18/10/30 00:30:32.81 pMMbbUDs.net
>>231
先頭を開けて1人追加するのは 1+ω = ω
倍の部屋番号へ移して ω 人追加するのは 2ω = ω

242:132人目の素数さん
18/10/30 00:43:18.09 i2Q1wF9o.net
リーマン予想とP≠NP予想はどっちの方が証明するのが難しいですか?

243:132人目の素数さん
18/10/30 03:04:00.18 1kUFo2x+.net
ABC
EFG
n=2の6マスでP君Q君のそれぞれのファーストの
組の総数をお願いします<(_ _)>

244:132人目の素数さん
18/10/30 03:44:10.47 oVqepi6V.net
P勝ち:EG FG EF BF
Q勝ち:BG CG BC CE CF
引き分け:AB AC AD AE AF AG BE

245:132人目の素数さん
18/10/30 04:26:38.58 uBW8ean2.net
p win : CE, EF, EG, FG
q win : BC, BF, BG, CF, CG
even : AB, AC, AE, AF, AG, BE
かと思った

246:132人目の素数さん
18/10/30 04:35:38.02 m3nuFJvJ.net
ABC
DEF
P勝ち  CD DE DF EF
Q勝ち  BC BE BF CE CF
引分け  AB AC AD AE AF BD

247:132人目の素数さん
18/10/30 04:38:18.15 uBW8ean2.net
質問では DEF が EFG になってるのから俺はちゃんとその通りにやってるのにお前らときたら自由だな…
>>236に至ってはよく見るとABCDEFGの7種使ってるし

248:132人目の素数さん
18/10/30 05:53:06.67 DPM


249:EzEI3.net



250:132人目の素数さん
18/10/30 05:57:47.96 m3nuFJvJ.net
自由ついでに分かりやすいように数字に置き換えてみた
1個目だけじゃなく、2個目の宝を先に見つけることも考えたら
結局、PQで差はないという直感どおりの結果になるな
123
456
12 ・Q
13 ・Q
14 ・P
15 ・P
16 ・・
23 QQ
24 ・P
25 QP
26 Q・
34 PQ
35 Q・
36 Q・
45 PP
46 P・
56 P・

251:132人目の素数さん
18/10/30 06:46:01.45 t8neO5le.net
別スレでこんなの見つけたんですが、これどこで証明されてるかご存知の方います?
スレリンク(math板:256番)
>オイラー定数をγと置く。nの約数の総和をσ(n)と置く。RHは

>σ(n)<(e^γ)*n*log(log n) (∀n>5040)

>と同値であることが知られている。

252:132人目の素数さん
18/10/30 07:07:11.36 t8neO5le.net
自己レス
とりあえず元論文はコレらしい
[24] G. Robin, Grandes valeurs de la fonction somme de diviseurs et hypoth`ese de Riemann,
J. Math. Pures Appl. 63 (1984), 187–213.
英語で読めるのないかなぁ?

253:132人目の素数さん
18/10/30 07:43:21.61 TZqGbv4d.net
5×6マスで宝の数を10まで増やしていくと、
D:\bin>for %i in (1,2,3,4,5,6,7,8,9,10) do treasure 5 6 %i
D:\bin>treasure 5 6 1
p1st = 14, q1st = 14, draw = 2
D:\bin>treasure 5 6 2
p1st = 203, q1st = 197, draw = 35
D:\bin>treasure 5 6 3
p1st = 1801, q1st = 1727, draw = 532
D:\bin>treasure 5 6 4
p1st = 11418, q1st = 11008, draw = 4979
D:\bin>treasure 5 6 5
p1st = 55469, q1st = 54036, draw = 33001
D:\bin>treasure 5 6 6
p1st = 215265, q1st = 211894, draw = 166616
D:\bin>treasure 5 6 7
p1st = 685784, q1st = 680768, draw = 669248
D:\bin>treasure 5 6 8
p1st = 1827737, q1st = 1825076, draw = 2200112
D:\bin>treasure 5 6 9
p1st = 4130886, q1st = 4139080, draw = 6037184
D:\bin>treasure 5 6 10
p1st = 7995426, q1st = 8023257, draw = 14026332

1:同等
1~8:短軸探索有利
9、10:長軸探索有利
という結果になった。
Haskellのコードはここ
--exe Fileにコンパイルしてコマンドラインから実行できるように改変(但し、エラー処理皆無)
スレリンク(math板:209番)

254:132人目の素数さん
18/10/30 07:47:14.67 TZqGbv4d.net
>>235
$Rscript main.r
P1st Q1st even
3 4 13
6マスで宝を3個にしてみた
$Rscript main.r
P1st Q1st even
3 4 13
P 1st
[,1] [,2] [,3]
[1,] C C D
[2,] D D E
[3,] E F F
Q 1st
[,1] [,2] [,3] [,4]
[1,] B B B C
[2,] C C E E
[3,] E F F F
even
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] A A A A A A A A A A B B B
[2,] B B B B C C C D D E C D D
[3,] C D E F D E F E F F D E F
Rのスクリプトをここに置いたから数値を変更して実行可能
URLリンク(tpcg.io)

255:132人目の素数さん
18/10/30 08:05:02.49 TZqGbv4d.net
>>241
自由ついでに5×6マスで宝が5個、先に全部の宝を見つけた方が勝者とすると
これくらい差が出る
D:\bin>treasure2 5 6 5
p1st = 54036, q1st = 55469, draw = 33001
確率にすると
> treasure2(5,6,5)
P1st Q1st even
54036 55469 33001
> 54036/(54036+55469+33001)
[1] 0.379184
> 55469/(54036+55469+33001)
[1] 0.3892398
なので差があると直観するかどうかは個々人の感性だな。

256:132人目の素数さん
18/10/30 10:08:36.51 ioBJjPrr.net
Haskel


257: だの R だの。そういうのは他でやれよ...。



258:132人目の素数さん
18/10/30 10:18:37.37 TZqGbv4d.net
>>247
使える人間にとっては電卓みたいなもんだよ。
log2の計算にいちいちマクローリン展開して手書き計算しないだろ。

259:132人目の素数さん
18/10/30 10:39:58.25 mcxWdfpM.net
ここまでjuliaが出てこなかった
juliaが流行しているのは自分の周りだけなのかな
(NGに巻き込まれて見えてないだけだったらゴメン)

260:132人目の素数さん
18/10/30 11:31:49.43 txysSoS4.net
>>249
どれかを移植して実力を示していただけたらうれしい。
5✕6マスで宝が15個の時の計算とかまだ誰も出してない。

261:132人目の素数さん
18/10/30 11:59:04.31 TZqGbv4d.net
>>241
先に2個の宝をみつけた方なら
123
456
12 Q
13 Q
14 P
15 P
16 =
23 Q
24 P
25 P
26 =
34 Q
35 =
36 =
45 P
46 =
56 =
にならない?

262:132人目の素数さん
18/10/30 12:07:08.08 TZqGbv4d.net
>>241
2個を先にみつけるじゃなくて
これは1個めの発見はQの方が確率が高くて、2個めに発見はPの方が確率が高いというだけの話だったみたいね。

263:132人目の素数さん
18/10/30 12:13:42.28 mcxWdfpM.net
>>250
juliaが周りで流行ってるだけで自分自身はCの人(Cソース書いてくれた人とは別人)
5x6ますで宝15個とか、ID:TZqGbv4dにお願いしたらすぐやってくれるんじゃない?
完全に作り直してるし。

264:132人目の素数さん
18/10/30 13:03:57.24 TZqGbv4d.net
>>252
i 番目をどちらが先にみつけるかを計算してみた。
4×5マスに宝が5個あるとき
> treasures(4,5,5)
p1st q1st even
[1,] 1948 9680 3876
[2,] 5488 10016 0
[3,] 7752 7752 0
[4,] 10016 5488 0
[5,] 9680 1948 3876
1個め2個めは短軸方向探索のQが、4個め5個めは長軸方向探索のPが、先にみつける宝の配置の組み合わせが多い。3個めは同じ。
全体としてはイーブンだが、
勝者は1個めを先にみつけた方にするか、全部を先にみつけた方にするかで結果が変わる。
Rのコードはここに置いたので数値を変えて実行可能。
URLリンク(tpcg.io)

265:132人目の素数さん
18/10/30 13:37:28.67 SFtp+jj6.net
n元集合からk個の元を取り出す順番を考慮して可能な場合を数え上げるとn*(n-1)*....*(n-k+1)通りあるというのはより原始的なものから導かれるものですか?

266:132人目の素数さん
18/10/30 14:00:45.62 ioBJjPrr.net
>>248
「プログラムで、ごり押し計算」
「マクローリン展開して手書き計算」
俺は後者の方が美しく感じるけどな。
実は前者で計算したのに後者を装ってほしいくらい。 (※ 私見です)

267:132人目の素数さん
18/10/30 14:14:18.76 uBW8ean2.net
>>254
単なる確認なんだけれども、
「i番目をどちらが見つけるか」というのは
先にi個見つけた方を勝ちとするのではなくて
例えばi=2だと
Pが1つ発見、Qが1つ発見⇒2番目を見つけたQの勝ち、ということですか?

268:132人目の素数さん
18/10/30 14:25:49.72 MIHAlyHX.net
ム板でやれ

269:132人目の素数さん
18/10/30 14:26:37.34 txysSoS4.net
>>257
>254の計算は各人にとってi番めの計算。
例えばi=2だと
Pが1つ発見、Qが1つ発見だと勝敗は未決で
どちらが発見者にとって2個めを発見したらそれが勝者として数えた。

270:132人目の素数さん
18/10/30 15:54:47.28 TZqGbv4d.net
んで、
ここまで答が出せた
254 名前:132人目の素数さん[sage] 投稿日:2018/10/30(火) 13:03:57.24 ID:TZqGbv4d
>>252
i 番目をどちらが先にみつけるかを計算してみた。
4×5マスに宝が5個あるとき
> treasures(4,5,5)
p1st q1st even
[1,] 1948 9680 3876
[2,] 5488 10016 0
[3,] 7752 7752 0
[4,] 10016 5488 0
[5,] 9680 1948 3876
1個め2個めは短軸方向探索のQが、4個め5個めは長軸方向探索のPが、先にみつける宝の配置の組み合わせが多い。3個めは同じ。
全体としてはイーブンだが、
勝者は1個めを先にみつけた方にするか、全部を先にみつけた方にするかで結果が変わる。
Rのコードはここに置いたので数値を変えて実行可能。
URLリンク(tpcg.io)

271:132人目の素数さん
18/10/30 16:19:16.88 txysSoS4.net
>>260
全体を眺めると直感的通り互角。
局所でみると濃淡があるということと理解した。

272:132人目の素数さん
18/10/30 16:39:29.02 wUEbhoSy.net
ゲルト・ファルティングスとアラン・コンヌの知能指数はどれくらいですか?

273:132人目の素数さん
18/10/30 16:45:15.00 wUEbhoSy.net
「真理」というのは存在するのでしょうか?
「真理」の探究は意味があるのでしょうか?

274:132人目の素数さん
18/10/30 16:54:34.66 wUEbhoSy.net
マイケル・アティヤとエドワード・ウィッテンはどっちの方が賢いですか?

275:132人目の素数さん
18/10/30 18:53:47.66 TZqGbv4d.net
>>253
ここまでは算出できたが、宝を14にしたらエラー終了した。
D:\bin>treasure 5 6 11
p1st = 13346984, q1st = 13395944, draw = 27884372
D:\bin>treasure 5 6 12
p1st = 19312228, q1st = 19372871, draw = 47808126
D:\bin>treasure 5 6 13
p1st = 24301031, q1st = 24358063, draw = 71100756

276:132人目の素数さん
18/10/30 19:00:13.09 1kUFo2x+.net
>>92
■引き分けの組み合わせは勝敗と無関係なので除外
宝が2個以上の時、
スタート地点のAマスと対極にある最終マスのLには
P君もQ君もどちらも決してたどり着くことはできないので
このLマスと組みとなる宝の配置は重複情報で意味を持たない
ので除外する
Pが先に見つけるのは以下の21通り
CE,DE,DI,EF,EG,EH,EI,EJ,EK,FG,FH,FI,FJ,FK,GI,GJ,HI,HJ,IJ,IK,JK,
Qが先に見つけるのは以下の22通り
BC,BD,BF,BG,BH,BI,BJ,BK,CD,CF,CG,CH,CJ,CK,DF,DG,DH,DJ,DK,GH,GK,HK,
となる

277:132人目の素数さん
18/10/30 20:06:33.85 m3nuFJvJ.net
>>260
何マスだろうが、宝が何個であろうが
出発点と終点が同じであれば
PQの宝を得られる個数の期待値は同じということだな

278:132人目の素数さん
18/10/30 20:09:54.61 TZqGbv4d.net
>>266
BE と CI の扱いは?

279:132人目の素数さん
18/10/30 20:16:22.96 TZqGbv4d.net
>>267
期待値は宝の数なわけで、元の問題は1個めをみつけるステップの数を比較しているんだと思う。

280:132人目の素数さん
18/10/30 20:27:29.84 TZqGbv4d.net
>>267
宝を先にみつけたら独り占め、同時にみつけたら折半 というルールなら手に入れる宝の数の期待値は同じになるだろうね。

281:132人目の素数さん
18/10/30 20:34:58.13 j0+hm9Fv.net
>>268
BI, CIは引き分けで除外なのでは
>>265
メモリを食わないコードを書いてみた
今思ったけど再帰で書いた方が読みやすかったか
URLリンク(ideone.com)
>>270
n x n+1 の部屋を縦横に調べる2人の場合は先着する部屋数が等しくなるからそうなるね
p君 ABCDEFGHIJKL
q君 BCDEFGHIJKLA
とかなら殆どq君が独り占め

282:132人目の素数さん
18/10/30 20:43:01.18 txysSoS4.net
>>271
URLリンク(ideone.com)
ありがとうございます、これを待望しておりました。

283:132人目の素数さん
18/10/30 20:45:58.07 1kUFo2x+.net
>>238
ABC
DEF
P勝ち  CD DE 
Q勝ち  BC BE  CE 
勝敗だけ知りたければデータ圧縮が可能

284:132人目の素数さん
18/10/30 21:02:19.29 j0+hm9Fv.net
P君Q君問題から得られる知見
早い者勝ちなら先回りすることが勝つ秘訣

285:132人目の素数さん
18/10/30 21:22:07.77 txysSoS4.net
>>274
>244に数値を挙げたけど宝の数が増えると逆転しちゃう。
個人的にはどこが逆転する境なのか算出方法が知りたいところ。

286:132人目の素数さん
18/10/30 21:26:43.68 DPMEzEI3.net
>>233
質問してばっかりだったので反省して自分で調べてみたんですけど
ω+ω=ω×ω=ω2だってことでした
でも、これは「無限ホテルのω号室の次の部屋からω人の客を泊めた」って事ですよね?
だから無限ホテルの話にあるように1号室→2


287:号室、2号室→4号室、3号室→6号室とずらして、間に入れ込めば2ω=ωになって万事解決って事で合ってますか?



288:276
18/10/30 21:32:47.59 DPMEzEI3.net
>>276
ω×ωはちがうかった……
これじゃω^2になっちゃう

289:132人目の素数さん
18/10/30 22:12:40.40 1kUFo2x+.net
q1..q2..q3..q4
q5..q6..q7..q8
q9q10q11q12
p1..p4..p7..p10
p2..p5..p8..p11
p3..p6..p9..p12
同じ座標なら数字の小さいほうが勝ち

290:132人目の素数さん
18/10/30 22:27:09.96 1kUFo2x+.net
[q2とq10] & [p4とp6]に宝が配置された時は
互いに数字の小さいほうを選んで勝負
q2 vs p4 で q2の勝ちとなる
この後にq10とp6の探査をしても
情報としての価値はゼロ

291:132人目の素数さん
18/10/30 22:38:59.14 j0+hm9Fv.net
>>276
>だから無限ホテルの話にあるように1号室→2号室、2号室→4号室、3号室→6号室とずらして、間に入れ込めば2ω=ωになって万事解決って事で合ってますか?
そうそう

292:132人目の素数さん
18/10/30 22:51:43.84 CVZYPi3J.net
まだ続いているようなので、>>189の後半で示したようなアイデアで、宝の数可変版の
プログラムを書いてみました。
多倍長を使える処理系を用いればいいのかもしれませんが、実数型で誤魔化しました。
故に大きな数字のところでは誤差があります。
URLリンク(codepad.org)

293:132人目の素数さん
18/10/30 23:11:50.13 A6MsJC+y.net
>>281
同じ方針のものがPythonで>>194-198にある

294:132人目の素数さん
18/10/30 23:22:12.50 NK3I4+n+.net
てか>>194-199に書いてある事がちゃんと読めれば宝の数が何個になっても場合わけ+多項式で記述できるのはすぐわかる。
読めよ。数学板なんだから。

295:132人目の素数さん
18/10/31 00:17:31.03 2LxBlHwr.net
>>281
いつもありがとうございます。
いやぁ、この出力は圧巻ですね。
Haskell先生もびっくり。

296:132人目の素数さん
18/10/31 00:20:44.63 GuJ72hDq.net
>>280
ありがとうございます
おかげさまですごくしっくりきました

297:132人目の素数さん
18/10/31 00:38:46.92 Ikjqn6xu.net
>>282 >>283
失礼しました。
数列を無理矢理分数式化する人や、価値の無い長い文章を投下する人がいるので、
読み飛ばしていました。
宝箱が二つの場合は、多項式での表現が完成していたんですね。
あのようなσやδを含む式を整理する数式処理ツールがあったとは驚きです。
二個で可能だったのだから、もっと多くの場合でも、可能なんでしょうね。

298:132人目の素数さん
18/10/31 01:01:33.69 JttzkDdq.net
P1 == 1/24*(6*n^3 + 20*n^2 - n - 27)*(n - 1) # nが奇数のとき
P2 == 1/4*n^4 + 7/12*n^3 - 7/8*n^2 - 13/12*n + 1 # nが偶数のとき
Q1 == 1/24*(6*n^2 + 10*n - 3)*(n + 1)*(n - 1) # nが奇数のとき
Q2 == 1/24*(6*n^2 - 2*n - 5)*(n + 2)*n # nが偶数のとき
多項式ってこれだけ?
kは変えられないし出力は意味不明だしナニコレ?
>>204の式ならk=554222,n=322300988とかでも
数秒で出力してくれるよ

299:132人目の素数さん
18/10/31 01:06:31.87 J5/yP0Q2.net
>>204の式ならkにどんな整数をいれても正解にならん。n=3でやってみろよ。
でn=3の場合66通り全部書きだして比較してみろよ。
実際書き出してみた正解とひとつも合わない式になんの意味がある?

300:132人目の素数さん
18/10/31 01:09:47.40 JttzkDdq.net
>>204の式は11C2=55通りで計算してある

301:132人目の素数さん
18/10/31 01:17:26.16 Xdi8PWHY.net
>>289
Prelude Data.Ratio> print [(n+1)*(n^2+2*n-1-k)%(n^2*(n+2)-n*k)|let n = 3,k<-([0..14]++[16..30])]
[56 % 45,26 % 21,16 % 13,11 % 9,40 % 33


302:,6 % 5,32 % 27,7 % 6,8 % 7,10 % 9,16 % 15,1 % 1,8 % 9,2 % 3,0 % 1,8 % 3,2 % 1,16 % 9,5 % 3,8 % 5,14 % 9,32 % 21,3 % 2,40 % 27,22 % 15,16 % 11,13 % 9,56 % 39,10 % 7,64 % 45] Prelude Data.Ratio> kに0~30何入れても正解なんぞ出てこんやろ?



303:132人目の素数さん
18/10/31 01:19:38.26 JttzkDdq.net
>>290
kに500~80000だとどうですか?

304:132人目の素数さん
18/10/31 01:22:51.22 JttzkDdq.net
k=554299747212,n=3212301098855
でも出力できたよ
ためしてごろうじろう

305:132人目の素数さん
18/10/31 01:28:28.82 9szLelGu.net
>>291
k>15だとすべて4/3より大きい値しかでないからアウト。何入れてもだめ。
>>292
n = 3~100までいれて全滅の式にそんな値いれても糞の意味もない。

306:132人目の素数さん
18/10/31 01:37:55.98 JttzkDdq.net
正確に一致しなくてもどちらが勝者になるかが
わかればいいと思う
k=5723457754299747212,n=3212301098855でも
出力できたぞ

307:132人目の素数さん
18/10/31 01:38:09.31 o8TBhUGW.net
3x4 の部屋で宝箱2個の場合は p, q の勝ちが 26,27だっけ
>>204
>       =(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk}
宝箱の数 k=1のとき p の勝ち数 = q の勝ち数になるけど、
上記の式は
= (n+1)(n^2+2n-2) / {n^2(n+2)-n}
= (n^3+3n^2-2) / (n^3+2n^2-n)
だから間違ってるね
というか式の導出過程がどの1ステップも論理的じゃないから検算する必要もないんだけど

308:132人目の素数さん
18/10/31 01:39:59.62 VK521Oc+.net
>>286
>あのようなσやδを含む式を整理する数式処理ツールがあったとは驚きです。
σを処理できないから>>195-196、δを処理できないから>>196-197を人手で行っている
SageMathにやらせているのはn乗の和の公式さえあれば高校生ができる計算
>二個で可能だったのだから、もっと多くの場合でも、可能なんでしょうね。
>>196-197のsubs({m:n+1,c:2})の2を3に変えれば宝が3個の場合の多項式が得られる

309:132人目の素数さん
18/10/31 01:50:39.23 JttzkDdq.net
>>295
k=17456619251,n=132123でちゃんと1が出力される
さすが

310:132人目の素数さん
18/10/31 01:51:22.71 Demuw4Zw.net
>>294
あほか?n=3~100で正しい数値出してない式になんの信憑性がある?
正しい答え出なきゃなんの意味もない。

311:132人目の素数さん
18/10/31 01:52:28.70 VK521Oc+.net
>>284
>>195-196のPythonをHaskellにすればいい
Haskellにもリスト内包表記があるんだから

312:132人目の素数さん
18/10/31 06:08:55.55 2LxBlHwr.net
>91で
 読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。
と書いたが犠牲者が出ているようだな。

313:132人目の素数さん
18/10/31 10:23:25.66 k/QZWhBY.net
間違えること自体は悪いことじゃないから、間違えたことがわかれば間違えたと書いておくか
そのまま消えてしまうだけで別にかまわないのに。

314:132人目の素数さん
18/10/31 10:29:51.18 PPhF82WW.net
なにが無駄ってこいつ
>>204
>計算知能にそのまま入力するだけで通分と約分を
>自動計算してくれるので試してごろうじろう

>■Wolfram入力例

>(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk},k=2,n=3
ってわざわざ全角で書いてコピペで入力できなくできないようにしてくれてる所。
wolfram 日本語版だけは全角でも入力できるけどその他のツールは全滅。
いちいち半角に打ち直さんといかん。
脳みそ1ccしかないんちゃうかと。

315:132人目の素数さん
18/10/31 13:58:47.90 6U/VyaCA.net
>>302
俺は>205の助言の意味が分かったので>204のidを速攻�


316:ナNGidに登録したよ。 日本製のエディタには全角半角変換できるのがあるよ。 例えば、http://mana.ikuto.com/



317:132人目の素数さん
18/10/31 14:39:11.34 D1u5pYAL.net
f(x)=-x²+ax+bがあり, y=f(x)は点(-2,1)を通る。
x∈[-3,3]で動くとき最大値Mと最小値mを, aについて次の2つ場合分けすることによって与えよ。
(1)a≧??のとき,
x=3でM=??a-??,
x=-3でm=-??a-??
(2)a≦??のとき,
x=-3でM=-??a-??,
x=3でm=??a-??
となっているのですが、これで場合分けは足りているのですか?

318:132人目の素数さん
18/10/31 14:39:54.65 /RfK3tjD.net
いや、そもそも数学の掲示板で数式全角で書いてる時点でアホだよ。
あとで数式コピペしてソフトに貼り付けるなんて普通にするじゃん。
* はさすがに見苦しいから我慢するけど、全部大文字にするのは意味わからん。
しかも
>計算知能にそのまま入力するだけで通分と約分を
>自動計算してくれるので試してごろうじろう
といいながらだよ?
アホじゃね?

319:132人目の素数さん
18/10/31 14:59:23.31 6U/VyaCA.net
>>299
御助言にしたがってHaskellに移植しました。
import System.Environment
choose (n,r) = product[1..n] `div` product[1..n-r] `div` product[1..r]
nloc m n k l = do
let q = div (n*k+l) m
r = mod (n*k+l) m
in (n-q)*(m-k) + q-1-l + if r>k then k-r else 0
nwin m n c = sum[choose ((nloc m n k l), c-1) | k<-[0..m-1], l<-[0..n-1], k*(n-1) < l*(m-1)]
mwin m n c = sum[choose ((nloc n m k l), c-1) | k<-[0..n-1], l<-[0..m-1], k*(m-1) < l*(n-1)]
draw m n c = choose(m*n,c) - nwin m n c - mwin n m c
main = do
argList <- getArgs -- m : 縦マス(短軸) n : 横マス(長軸) k : 宝の数
let m = read (argList !! 0)
n = read (argList !! 1)
k = read (argList !! 2)
putStrLn $ "p1st = " ++ show(mwin m n k) ++ ", q1st = " ++ show(nwin m n k) ++ ", draw = " ++ show(draw m n k)
おかげ様でこういうのも瞬時に計算してくれました。
10×20マスで宝が100個
>takara 10 20 100
p1st = 15057759425309840160151925452579572328997602171271937639470, q1st = 15057796557877993527038542474310161591275806044157319150135, draw = 60432921540347294111327092128863840691952977587098698541050

320:132人目の素数さん
18/10/31 15:03:15.11 6U/VyaCA.net
>>305
数学板は例外かもしれないが、マクロウイルスが貼られるのの予防か半角で投稿すると拒絶されることがあるな。
httpを貼ろうとするとはねられるときには全角にすることもあるな。まあ、数文字大文字に留めるけど。

321:132人目の素数さん
18/10/31 17:14:52.73 42bMLcC4.net
>>304
誰も答えていないしみんな困ってるんだと思うが、すべての場合を調べているわけではない、と考えればいいだけの話。
というかそうとしか捉えられないw

322:132人目の素数さん
18/10/31 17:39:16.62 JttzkDdq.net
>>306
既約分数で表示してくれ

323:132人目の素数さん
18/10/31 18:31:09.78 JttzkDdq.net
>>305
P(A)をP(B)で割ることによって
P君の勝つ数とQ君の勝つ数が導ける
P(A)/P(B)=(P君の勝つ数)/(Q君の勝つ数)
          {n(n+2)-k-1}/{n^2(n+1)-kn}
P(A)/P(B)=――――――――――
          {n(n+2)-k}/{n(n+1)^2-k(n+1)}

       =(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk}
          
        ∵[n≧2,n(n+1)-1>k≧1]
∵の範囲でnとkの数値をいろいろと変えることにより
様々な勝率が導ける
計算知能にそのまま入力するだけで約分を
自動計算してくれるので試してごろうじろう
■Wolfram入力例
(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk},k=2,n=3
(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk},k=2,n=3
スタート地点のAマス以外のすべてのマスに
宝がある状態であるk=n(n+1)-1の時、
必ずP(A)/P(B)=1になる
k=n(n+1)-1の時にP(A)/P(B)≠1となるnを
見つけることができれば反例になる
見つけてごろうじろう

324:132人目の素数さん
18/10/31 18:52:26.89 3bIZfida.net
a,b,cは自然数とする。
このとき、以下の不等式を満たす(a,b,c)が存在するような自然数Nの最大値を求めよ。
N≦a^2+b^2+c^2≦2018

325:132人目の素数さん
18/10/31 18:54:45.40 Xi/4xckY.net
>>306
タイプミスで draw が間違ってますよ

326:132人目の素数さん
18/10/31 19:12:43.10 6U/VyaCA.net
>>312
ご指摘ありがとうございました。
× draw m n c = choose(m*n,c) - nwin m n c - mwin n m c
○ draw m n c = choose(m*n,c) - nwin m n c - mwin m n c

327:132人目の素数さん
18/10/31 19:15:52.62 6U/VyaCA.net
>>306
ご指摘を受けたのでデバッグしたのを投稿します。
import System.Environment
choose (n,r) = product[1..n] `div` product[1..n-r] `div` product[1..r]
nloc m n k l = do
let q = div (n*k+l) m
r = mod (n*k+l) m
in (n-q)*(m-k) + q-1-l + if r>k then k-r else 0
nwin m n c = sum[choose ((nloc m n k l), c-1) | k<-[0..m-1], l<-[0..n-1], k*(n-1) < l*(m-1)]
mwin m n c = sum[choose ((nloc n m k l), c-1) | k<-[0..n-1], l<-[0..m-1], k*(m-1) < l*(n-1)]
draw m n c = choose(m*n,c) - nwin m n c - mwin m n c
main = do
argList <- getArgs -- m : 縦マス(短軸) n : 横マス(長軸) k : 宝の数
let m = read (argList !! 0)
n = read (argList !! 1)
k = read (argList !! 2)
putStrLn $ "p1st = " ++ show(mwin m n k) ++ ", q1st = " ++ show(nwin m n k) ++ ", draw = " ++ show(draw m n k)

328:132人目の素数さん
18/10/31 19:41:15.07 Xi/4xckY.net
>>304
変な問題だけど、次の2つの場合、すなわち
・x=3のとき最大、x=-3のとき最小 (a≧6のときか?)
・その逆 (a≦-6のときか?)
に分けて??を埋めよという問題なのだろうから、
その2つのときだけ考えて答えれば良いのではないだろうか
「分けて」ってのが変だよね
次の2つの場合について、ならわかるんだけど。

329:132人目の素数さん
18/10/31 20:07:35.11 oZeu8G8O.net
俺の最大の夢は、「「無」になってもう二度と「有」にならない」ことだ。
どうすればこれを実現できるのでしょうか?
自殺をしても無駄なのでしょうか?

330:132人目の素数さん
18/10/31 21:37:19.52 EEWI02Z3.net
高専2年
行列の固有値と対角化
(4)が全然わかりません
よろしくお願いします
URLリンク(i.imgur.com)

331:132人目の素数さん
18/10/31 21:49:44.27 6U/VyaCA.net
先に1個めの宝を見つけるには短軸探索と長軸探索とどちらが有利かは宝の数によって変わるのでグラフにしてみた。
縦5横6のとき宝の数を1から30まで増やして長軸探索が先にみつける確率と短軸探索がさきにみつける確率の差を描いてみた。
URLリンク(i.imgur.com)
縦5横6のときだと宝の数は9から21のときが長軸探索が有利となった。
短軸有利→長軸有利→同等となるようで、再逆転はないもよう。
縦m横m+1として長軸探索が有利になる宝の数の上限と下限を算出してみた。
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,] 0 2 2 6 9 13 17 23 29 36 43 52 61 71 82 93 105 118 132 147
[2,] 0 3 7 13 21 31 43 57 73 88 105 118 135 152 166 185 202 220 242 253
グラフにしてみた。
URLリンク(i.imgur.com)

332:132人目の素数さん
18/10/31 21:58:51.26 3bIZfida.net
>>311
これをお願いします

333:132人目の素数さん
18/10/31 22:29:57.00 ldFHIXo+.net
>>311
直感の概算  (a,b,c)=(40,20,4)  N=2016
微調整    (a,b,c)=(44,9,1)  N=2018
なんか問題を勘違いしてるかな?    

334:132人目の素数さん
18/10/31 22:31:04.22 JttzkDdq.net
>>311
a=44,b=9,c=1のとき2018-a^2-b^2-c^2=0
2018-a^2-b^2-c^2,a=44,b=9,c=1
∴N=2018

335:132人目の素数さん
18/11/01 00:10:20.85 AEjEpZy5.net
N=2018 
(a,b,c)=(44,9,1)、(43,12,5)

336:132人目の素数さん
18/11/01 00:29:38.31 b1wO9L0a.net
2018-a^2-b^2-c^2,a=41,b=16,c=9
∴N=2018

337:132人目の素数さん
18/11/01 00:31:21.78 AEjEpZy5.net
(44,9,1)
(43,12,5)
(41,16,9)
(35,27,8)
(34,29,11)
(33,23,20)

338:132人目の素数さん
18/11/01 00:53:58.60 b1wO9L0a.net
a=36,b=19,c=19
a=35,b=28,c=3
a=35,b=27,c=8
∴N=2018
>>324
(34,29,11)は違う

339:132人目の素数さん
18/11/01 02:54:39.51 vtjUzc7H.net
計算機実験は大事だと思うけどダンプ


340:リストみたいなの延々載せられてもなんかもにょる。



341:132人目の素数さん
18/11/01 05:19:46.53 xVnRbBm5.net
>>317

17.27 正則行列A = { [a,0,0] [0,b,c] [0,c,b] } について,次の問に答えよ。(九大*)
(1) 行列Aの逆行列A^(-1) の (2,3) 成分を求めよ。
(2) Aの固有値を求めよ。
(3) A^2 = { [4,0,0] [0,0,2i] [0,2i,0] } を満たす a,b,c の値を求めよ。iは虚数単位。
(4) nを自然数とし,A^n (i,j)は行列A^n の(i,j)成分を表わすものとする。
  そのとき、A^n (2,2) + A^n (3,2) を n, b, c を用いて表わせ。

342:132人目の素数さん
18/11/01 05:35:54.50 GatmQtrC.net
>>317,327
a[n] = a^n、b[n] = ((b+c)^n + (b-c)^n)/2、c[n] = ((b+c)^n - (b-c)^n)/2とおいて
A^n = [[a[n],0,0],[0,b[n],c[n]],[0,c[n],b[n]]]、
[1,0,0]A = a[1,0,0]A、[0,1,1]A = (b+c)[1,0,0]、[0,0,1]A = (b-c)[1,0,0]A。
(1) c[-1]。
(2) a,b+c,b-c。
(3) a^2=4 ⇔ a=±2、
  (b+c)^2 = 2i、(b-c)^2 = -2i ⇔ (b,c) = (1, i)、(-1, -i)、(i, 1)、(-i, -1)。
(4) b[n] + c[n] = (b+c)^n。

343:132人目の素数さん
18/11/01 06:05:53.60 xVnRbBm5.net
>>317 >>327
(1)
  det(A) = a(bb-cc),
  A^(-1) = { [1/a,0,0] [0,b/(bb-cc),-c/(bb-cc)] [0,-c/(bb-cc),b/(bb-cc)] }
(2)
  det(A-λE) = det{ [a-λ,0,0] [0,b-λ,c] [0,c,b-λ] }
  = (a-λ)(b-c-λ)(b+c-λ)
∴ λ = a,b±c,
(3)
  A^2 = { [a^2,0,0] [0,bb+cc,2bc] [0,2bc,bb+cc] }
∴ a = ±2,(b,c) = (0,±(1+i)) (±(1+i),0)
(4)
  A^n = { [a^n,0,0] [0,f_n,g_n] [ 0,g_n,f_n] }
  ただし、f_n = {(b+c)^n + (b-c)^n}/2, g_n = {(b+c)^n - (b-c)^n}/2,
  (f_n)^2 - (g_n)^2 = (bb-cc)^n,
あとは自分で考えて

344:132人目の素数さん
18/11/01 07:42:27.89 xCdOvDq8.net
>>311
Nの最大値は2018
顰蹙のプログラム解
Prelude> [(a,b,c)|a<-[1..45],b<-[a..45],c<-[b..45], a^2+b^2+c^2==2018]
[(1,9,44),(3,28,35),(5,12,43),(8,27,35),(9,16,41),(19,19,36),(20,23,33)]

345:132人目の素数さん
18/11/01 10:00:52.96 ZI9FoIBR.net
>>326
そこから規則性が見いだせれば理論はあとからついてきたりすることもあるからね。
コラッツの問題みたいに未決のままのもあるけど。

346:132人目の素数さん
18/11/01 12:19:48.42 +Vmpp6Zg.net
ここでコード書いてるやつは規則見出して解くなんて気持ちサラサラないやろ?
プログラム書いて遊んでるだけ。
数学的な解出てもガン無視してるし。

347:132人目の素数さん
18/11/01 13:15:12.78 xCdOvDq8.net
処理速度が不十分なインタープリタでのコードをコンパイラのコードに移植してくれるのはとても勉強になるので嬉しいね。
>312のような指摘もとてもありがたい。

348:132人目の素数さん
18/11/01 13:50:05.89 X0yV8qdr.net
遊ぶなら自分一人でやってればいいのにね。
こんなんできた~ってひけらかしたいんだろ?

349:132人目の素数さん
18/11/01 14:33:43.50 DGlwDrwF.net
荒らしよりは意味がある

350:132人目の素数さん
18/11/01 15:18:50.87 02Lyc5pT.net
PCでのシミュレーション解を越えた解析解が出たら
それを検証して解析解をPCでの計算に応用。
おかげで>142から>314に進化できた。
プログラミングのトレーニング課題を与えてくれた方に深謝。
引き分けのバグ指摘にも感謝。
数理


351:展開が勉強になるようにコードの議論も俺には嬉しい。 このスレではじめてHaskellの存在を知った初心者なので>299のような適格なアドバイスは嬉しいね。



352:132人目の素数さん
18/11/01 16:03:45.77 yg4Nrziz.net
nを自然数、aを実数とするとき、
x^2-(4n-3)x+a/(n^2+n+1) ≦ 0
を満たす整数xが存在するためにn,aが満たすべき条件を述べよ。

353:132人目の素数さん
18/11/01 18:18:17.69 AEjEpZy5.net
aのb乗×cのd乗=abcd
abcdに当てはまる数字は?
※答は1通りしかないようです。

354:132人目の素数さん
18/11/01 18:25:46.20 yg4Nrziz.net
>>338
aとcで割れば?
細かい条件は自分でやって

355:132人目の素数さん
18/11/01 19:16:38.68 xCdOvDq8.net
>>338
1を許すと沢山ある(1,1,1,1),(1,1,2,1),(1,1,2,2),(1,1,3,1),(1,1,4,1),(1,1,5,1),(1,1,6,1).....けど
(2,2,2,2)が答?

356:132人目の素数さん
18/11/01 19:37:28.66 AEjEpZy5.net
>>340
ごめん、abcd は4桁の整数

357:132人目の素数さん
18/11/01 19:47:15.96 OC3wBzdi.net
Prelude Data.Ratio> [x | a<-[0..9],b<-[0..9],c<-[0..9],d<-[0..9],let x = 1000*a + 100*b+10*c + d, x == a^b*c^d]
[2592]

358:132人目の素数さん
18/11/01 19:47:27.74 AEjEpZy5.net
a^b+c^d=1000a+100b+10c+d

359:132人目の素数さん
18/11/01 19:52:36.37 AEjEpZy5.net
>>343 訂正
× a^b+c^d=1000a+100b+10c+d
○ (a^b)*(c^d)=1000a+100b+10c+d

360:132人目の素数さん
18/11/01 19:59:05.61 xCdOvDq8.net
>>344
これまた顰蹙のダンプリストw
Prelude> [(a,b,c,d)|a<-[1..10],b<-[1..10],c<-[1..10],d<-[1..10],a^b*c^d==1000*a+100*b+10*c+d]
[(2,5,9,2)]

361:132人目の素数さん
18/11/01 20:01:51.76 xCdOvDq8.net
>>345
失礼しました
>342のコードが正しい

362:132人目の素数さん
18/11/01 20:04:00.31 mQEkML9R.net
>>327
>(4) nを自然数とし,A^n (i,j)は行列A^n の(i,j)成分を表わすものとする。
>  そのとき、A^n (2,2) + A^n (3,2) を n, b, c を用いて表わせ。
元の質問者の方向きに解き方の解説
行列のn乗の計算は
A を A’ = P ^-1 A P (A’ は対角行列) と対角化して
A’^n = (P ^-1 A P)^n
⇔ A’^n = P ^-1 A^n P
⇔ P A’^n P^-1 = A^n
ここでA’ は対角行列なので
A’^n は各要素をn乗するだけという流れ
問い (1)~(3) は対角化の仕方を調べているうちにわかると思うので略

363:132人目の素数さん
18/11/01 22:26:21.80 tizy9POX.net
(1/x)*ln(1+x)>1+ln(2/(x+2)),
x>0
のときの証明方法を教えて下さい

364:132人目の素数さん
18/11/01 22:43:00.52 dkftLkCy.net
とりあえず微分すれば何とかなりそう

365:132人目の素数さん
18/11/02 00:07:51.28 +UTP9GLJ.net
>>295
4マス3行(3ターン)と3マス4列(4ターン)で一つの宝と出くわす
確率は同じにならない
■3マス4ターンで少なくとも一つの宝と出くわす確率は
#A=3^4-2^4=65なので
P(A)=65/81
■4マス3ターンで少なくとも一つの宝と出くわす確率は
#B=4^3-3^3=37なので
P(B)=37/64
∴P(A)>(B)
∵P(A)=65/81=0.802
∵P(B)=37/64=0.578

366:132人目の素数さん
18/11/02 00:13:02.61 vfB9uvei.net
今日のNGIDがこんなに早い時間にw

367:132人目の素数さん
18/11/02 00:31:24.41 +UTP9GLJ.net
ジョーカー11枚とハートのエース1枚が入った12枚の
トランプカードをよくシャッフルする
この山札から1ターン3枚を4回ですべて引くのと
1ターン4枚を3回ですべて引く場合も同じ

368:132人目の素数さん
18/11/02 00:41:36.07 G7GSas0t.net
この人確率の問題好きなんだろうね。
しょっちゅう確率の問題に手を出してる。
しかし一度たりとも正解の数値と合ってる式出した事ない。
まぁ本人自分の出した答えが間違ってる事すら理解出�


369:�てないのである意味で幸せなのかもしれない。 苦労して立式して合うはずの答えが何故か合わないあの苦々しさに耐えないで済むんだから。



370:132人目の素数さん
18/11/02 01:31:44.33 +UTP9GLJ.net
>>352
1ターン3枚を4-1回で引く時に
ハートのエース1枚が出る確率は
P(A)=1-(3/4)(2/3)(1/2)=3/4
1ターン4枚を3-1回で引く時に
ハートのエース1枚が出る確率は
P(B)=1-(2/3)(1/2)=2/3
∴P(A)>(B)

371:132人目の素数さん
18/11/02 01:36:19.38 +UTP9GLJ.net
3x4の合計12マスに宝を一つだけ設置した時に
3列x4ターンと4行x3ターンの探査で同じ確立になるという
計算式をお願いします<(_ _)>
■■■■
■■□■
■■■■

372:132人目の素数さん
18/11/02 02:15:59.43 YYpR1gsw.net
>>337
だれかこれをお願いします。
nが自然数なので2次不等式を解いてもあまり上手くいきそうにありません

373:132人目の素数さん
18/11/02 02:28:39.71 UxWLcMBZ.net
>>356
x = 2n-1で成立
⇔ 4*n^4-2*n^3-4*n+2 ≧ a

374:132人目の素数さん
18/11/02 02:38:59.54 YYpR1gsw.net
>>357
ありがとうございます
1つの例ではなくて必要十分な形で占めしていただけませんか

375:132人目の素数さん
18/11/02 03:04:32.60 vfB9uvei.net
それで必要十分条件だろ
x^2-(4n-3)x+a/(n^2+n+1) ≦ 0 ... (1)
左辺は x=2n-3/2 のとき最小、
整数の範囲では x=2n-1 または x=2n-2 で最小値
(a - 4n^4+2n^3+4n^2-2n) / (n^2+n+1) となる
この式の分母は正なので分子が0以下なら(1)を満たす

376:132人目の素数さん
18/11/02 03:16:04.56 im1SI6w9.net
>>143 >>194>>198 >>203 >>282 >>299
立山秀利「入門者のPython」講談社BlueBacks (2018/Sep)
 398p.1404円
 URLリンク(bookclub.kodansha.co.jp)
【執筆時に使用した環境】
・Microsoft Windows 8.1 および 10
・Python version 3.6
・Anaconda 5.2 for Windows
・Spyder 3.2.8
上記以外の環境でご利用の場合、本書の解説どおりに操作を行えない可能性があります。予めご了承ください。
本書に掲載されている情報は、2018年8月時点のものです。実際にご利用になる際には変更されている場合があります。
【サポートページ】
URLリンク(tatehide.com)

377:132人目の素数さん
18/11/02 05:54:31.51 wc7sV/cw.net
>>348
左辺 - 右辺のグラフを書いてみた。
URLリンク(i.imgur.com)

378:132人目の素数さん
18/11/02 11:47:02.16 Y7Tkqu2S.net
赤いビックリマーク以後の行がよくわかりません
4^k+1を4×4^kと見なすことで
成り立つと仮定された不等式を援用して新たな不等式を考えているらしいことはわかりますが
どう計算したら24k-5>0になるのかがわかりません
4^k-(8k+1)
URLリンク(i.imgur.com)

379:132人目の素数さん
18/11/02 12:07:43.45 ACrozris.net
k≧3
24k≧72
24k-5≧72-5=67>0

380:132人目の素数さん
18/11/02 12:49:21.13 cBeA3Am5.net
...やっとわかりました
0より大きい24k-5よりもさらに両辺の差は大きいのでもちろんそれは0より大きく、よって不等号の正しさが証明されていたのですね
二回両辺の差を考えようとしてどうしても24k-5が作り出せず混乱していました
ありがとうございました

381:132人目の素数さん
18/11/02 13:33:04.31 b


382:Y2r18eX.net



383:132人目の素数さん
18/11/02 14:55:26.18 GY5yQIwK.net
解析的整数論専攻で有名な教授って誰がいますか?雪江明彦氏以外で知ってる方いたら教えてください

384:132人目の素数さん
18/11/02 15:01:48.97 MJ+cRGf4.net
微分方程式が解けませんでした。どなたかお願いします。
y'+(x^2)y=1

385:132人目の素数さん
18/11/02 15:39:32.17 wc7sV/cw.net
>>367
URLリンク(m.wolframalpha.com)

386:132人目の素数さん
18/11/02 15:41:23.13 wc7sV/cw.net
>>368
こっちだな
URLリンク(m.wolframalpha.com)

387:132人目の素数さん
18/11/02 16:35:27.47 d4cqGK7t.net
3×4=12マス、宝1個のみ
□■■■ ■■■■
■■■■ ■■■■  PとQが同時に見つける
■■■■ ■■■□ 
■■■■ ■■■■ ■■■■ ■■■■ ■■■■
□■■■ ■■■■ ■□■■ ■■■■ ■■■■  Pが先に見つける
■■■■ □■■■ ■■■■ ■□■■ ■■□■ 
■□■■ ■■□■ ■■■□ ■■■■ ■■■■
■■■■ ■■■■ ■■■■ ■■□■ ■■■□  Qが先に見つける
■■■■ ■■■■ ■■■■ ■■■■ ■■■■ 

388:132人目の素数さん
18/11/02 20:30:16.62 wc7sV/cw.net
ABCD
EFGH
IJKL
のように命名すると
縦:m 横: 宝:k での配置を列挙するコードは既出。数値を変えて実行可。
URLリンク(tpcg.io)

389:132人目の素数さん
18/11/02 22:15:38.09 +UTP9GLJ.net
>>371
配置の列挙は確率ではありませんよ
宝が一つの時、縦探査のP君が決して取れない宝は2マス
□□□■
□□□■
□□□□
宝が一つの時、横探査のQ君が決して取れない宝は3マス
□□□□
□□□□
■■■□
決して宝を取れないマスが一マス多いQ君が
P君と同じ確立になるのはなぜ?

390:132人目の素数さん
18/11/02 22:20:40.10 +UTP9GLJ.net
P君とQ君が決して取れない宝がある列と行のマス数ね

391:132人目の素数さん
18/11/02 22:23:49.11 +UTP9GLJ.net
この状態で計算式を作ると
P(A)=1-(3/4)(2/3)(1/2)=3/4
P(B)=1-(2/3)(1/2)=2/3
∴P(A)>(B)
>>354と同じ

392:132人目の素数さん
18/11/02 22:52:20.36 G7GSas0t.net
>>372
>>370

393:132人目の素数さん
18/11/02 23:55:39.98 CO4fuCl5.net
>>371
P(短軸探索)が先、Q(長軸探索)、同時 の配置を表示するスクリプトを書いてみた。
数値を変えて実行できる。
m:短軸 n:長軸 k:宝の数
URLリンク(tpcg.io)

P1st Q1st even
26 27 13

P (= long axis searcher) finds first.
■ ■ □ ■
□ ■ ■ ■
■ ■ ■ ■

■ ■ ■ □
□ ■ ■ ■
■ ■ ■ ■

■ ■ ■ □
■ ■ ■ ■
□ ■ ■ ■
以下略、

394:132人目の素数さん
18/11/03 00:14:01.33 zSMa/Wom.net
>>376
5x6で宝が2個のとき
P1st Q1st even
203 197 35
引き分けになる配置は35通り、3例ほど挙げるとこんな感じ
とても手作業で列挙する気にはならん。
■ ■ ■ ■ □ ■
■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■
□ ■ ■ ■ ■ ■

■ ■ ■ ■ ■ ■
■ ■ □ ■ ■ ■
■ ■ ■ ■ ■ ■
■ □ ■ ■ ■ ■
■ ■ ■ ■ ■ ■

■ ■ ■ ■ ■ ■
■ ■ ■ □ ■ ■
■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■
■ □ ■ ■ ■ ■

395:132人目の素数さん
18/11/03 00:19:05.37 /E6xXixt.net
>>367
 y(x) = u(x)e^(-xxx/3)
を与式に入れると
 du/dx = e^(xxx/3),
 u(x) = u(0) + ∫[0,x] e^(ttt/3) dt,
 y(x) = e^(-xxx/3) {y(0) + ∫[0,x] e^(ttt/3) dt },
かな

396:132人目の素数さん
18/11/03 02:01:28.43 GJogDojw.net
y = ∫0→x xy dx
この方程式が解けません
教えて下さい

397:132人目の素数さん
18/11/03 02:16:31.16 6u03sBH6.net
y=0

398:132人目の素数さん
18/11/03 02:26:53.34 GJogDojw.net
y = ce^(x^2/2)
であってますか?

399:132人目の素数さん
18/11/03 02:34:04.86 Sa4Jrve0.net
微分する
初期条件y(0)=0

400:132人目の素数さん
18/11/03 13:29:52.32 PHFdSdeY.net
確率1/3のくじを1回ひくのと確率1/9のくじを3回ひくのでは、
当たりをひく確率は同じですか?
複数回ひく場合でも前にひいたくじがなくなる訳ではなく
毎回同じ確率で抽選されるという仮定の場合です

401:132人目の素数さん
18/11/03 14:05:15.33 Ng1V9LvS.net
1/9^3で3回当たり
24/9^3で2回当たり
192/9^3で1回当たり
8^3/9^3で全て外れ
「一回でも当たる確率」は、(1+24+192)/9^3 = 217/9^3 = 1-(8/9)^3 < 243/9^3 = 1/3
なので、当選確率1/3のクジを一回引くのより小さい
しかし、「当たる回数の期待値」は
(3*1+2*24+1*192)/9^3=(3+48+192)/9^3=243/9^3=1/3
なので、当選確率1/3のクジを一回引くのと同じ

402:132人目の素数さん
18/11/03 15:37:38.65 zSMa/Wom.net
>>372
離散量の確率は場合の数をいかに効率的にカウントするかによるね。
手作業だと漏れがでるからプログラムの利用は必須
>377参照。
投稿前に自分でシミュレーション検証して投稿すれば、
>302のように こいつ 呼ばわりされなくて済むんだけどね。
自分で算出した値が別の言語の算出結果と一致したと投稿されるとシミュレーションの正しさが確認できていいね。
俺が鈍足のRコードのをだすと高速のcが投稿されたり、解析解が投稿されて数理とプログラム論理の勉強になって嬉しいね。

403:132人目の素数さん
18/11/03 15:45:00.36 tJ6POH4O.net
>>302
sed使えよw

404:132人目の素数さん
18/11/03 15:49:27.19 zSMa/Wom.net
>>383
顰蹙のシミュレーション検証
100万回シミュレーションして頻度をだしてみた
確率1/3のくじを1回ひく
> mean(replicate(k,sample(x,1))
[1] 0.333435
確率1/9のくじを3回ひくのでは、)
> mean(replicate(k,sum(sample(y,3))))
[1] 0.333176


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch