18/10/04 18:44:18.13 KWY4bWhj.net
>>879
「p≡1 (mod 4)とn≡1 (mod 4)を満たすpとnであれば全てyは奇数の公倍数になる」
まず、これが嘘。
君は嫌がるけど、数学は変数の数があってない2つの命題考えるときは原則∀、∃の記号ついてないとだめなの。
じゃあ、p, n についての命題と考えて y について束縛するよ?
命題は
p ≡ 1 (mod 4)、n ≡ 1 (mod 4) … (X)
y は p^n と (1 + p + … + p^n)/2の公倍数…(Y0)
だね。
でも(Y0)の方は y が束縛されてないからこのままでは比較できない。
で∀、∃のどっちだった?
>>693の文章は
「n が奇数、pが奇素数、y が p^n と (1+p+…+p^n)/2 の公倍数である奇数のとき」
だね?
つまり p, n についての条件としては
「p^n と (1+p+…+p^n)/2 の公倍数である奇数 y が少なくとも1つ存在するとき」
だね?∃だね?
つまり(X)と比較すべき命題は
∃y p^n と (1+p+…+p^n)/2 の公倍数である奇数 …(Y)
だね?
いい?
論文よく見返してみてよ?
まず論文が正しいなら
「y が奇数の完全数とする。
…(中略)…
∴ n が奇数、pが奇素数、y が p^n と (1+p+…+p^n)/2 の公倍数である奇数 」
までのブロックと
「n が奇数、pが奇素数、y が p^n と (1+p+…+p^n)/2 の公倍数である奇数であるから
…(中略)…
矛盾
」
のブロックにわけて後半部分を独立して抜き出せるよね?
後半ブロックは前半ブロックを全く引用してないんだから。
じゃあ後半ブロックも正しくないといけないよ?
数学で一部分抜き出して間違いなんてことはありえない。
だったら
「n が奇数、pが奇素数、y が p^n と (1+p+…+p^n)/2 の公倍数である奇数は存在しない」
の証明ができあがるでしょ?
一部分だと間違いだけど、全体としては合ってるなんてことはありえない。
数Aの教科書遺してる?
命題「✕✕」が矛盾することの証明にはなにが必要であるってかいてあった?
まずそこ読み直してみてよ?