奇数の完全数の存在に関する証明at MATH
奇数の完全数の存在に関する証明 - 暇つぶし2ch544:132人目の素数さん
18/09/28 18:22:35.52 ErOOHgEc.net
n=5だと
a = 2y/(1+p+p^2+p^3+p^4)
b = y/p^5
c = a/p^5
s = p^5
u = p^4 + p^2 + 1
v = (u-1)/2 = (p^4 - p^2)/2
w = v/p = (p^3 -p)/2
z = w/p = (p^2 -1)/2
A = (2z - 1)/p = p
B = A/p = 1
C = (B-1)/p = 0
D = C/p = 0
が条件式を満たす実例として持つから矛盾するわけがない。
そしてこの例でD=0であるけど⑤の係数
(a-2b) = 2y/(1+p+p^2+p^3+p^4) - y/p^5 ≠ 0
2b = y/p^5 ≠ 0
-a = 2y/(1+p+p^2+p^3+p^4) ≠ 0
でD=0⇒a-2b=0、2b=0、-a=0
の反例を与えてるからp7の証明なんか成立するわけがない。
どうして目に見えてる反例より自分の証明の方が正しいと信じられるんだろうねぇ?
反例とはなにかとか、反例ある命題が証明できるわけないという理屈を全然理解してないんかねぇ?


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch