奇数の完全数の存在に関する証明at MATH
奇数の完全数の存在に関する証明 - 暇つぶし2ch152:132人目の素数さん
18/09/23 07:03:26.58 NPfWkPrS.net
偶数の完全数を496とし、そのうち一つの素因数を2、2の指数を整数4(4≧1),2以外の素因数を31とし、31の指数を1とする。
a=(1+31)
b=31
とすると、完全数の定義より 32(1+2^2+2^3+2^4)=2・496=2・31・2^4
これを変形して (32・2-2・31・2+2・31)2^4=32
2=(32・2-2・31・2+2・31) (2>0)…⑤ とすると、2・2^4=32となるから、32/2は整数であり、これを16とする。
2・31(2-1)=2・31・2-2・31=32・2-2=2(2^{4+1}-1)となるから、2・31=2(p^4+…+1)
2・31は2の倍数だから2・31/2を31として、2・31=2・31
⑤と32=2・16より2=2・16・2-2・31・2+2・31、2≠0だから1=16・2-31・2+31
31・2-16・2=(31-16)・2=31-1 だから 31-1≡0 (mod 2)
15を整数として、31-1=15・2 とすると、
(15・2+1)・2-16・2=15・2 よって 15・2-16=15-1
16=32/2=2^4 より 15・2-2^4=15-1 となり、15-1≡0 (mod 2)
7を整数として 15-1=7・2とすると、
(7・2+1)・2-2^4=7・2 よって 7・2-2^{4-1}=7-1 となる。
4=1のとき、7・2-1=7-1 より 2=1 となるから不適となる。よって4>1
3を整数として 7-1=3・2とすると、
(3・2+1)・2-2^{4-1}=3・2 よって 3・2-2^{4-2}=3-1 となる。
4=2のとき、3・2-1=3-1 より 2=1 となるから不適となる。よって4>2
1を整数として 3-1=1・2とすると、
(1・2+1)・2-2^{4-3}=1・2 よって 1・2-2^{4-3}=1-1 となる。
4=3のとき、1・2-1=1-1 より 2=1 となるから不適となる。よって4>3
0を整数として 1-1=0・2とすると、
(0・2+1)・2-2^{4-3}=0・2 よって 0・2-2^{4-4}=0-1 となる。
4=4のとき、0・2-1=0-1 より 2=1 となるから不適・・・ではありません。
良かったね。496はひょっとしたら完全数かもしれません。

>>142を借りました、ありがとう。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch