分からない問題はここに書いてね447at MATH
分からない問題はここに書いてね447 - 暇つぶし2ch68:132人目の素数さん
18/09/18 23:20:11.61 8tNJHaXw.net
>>58
ヒントありがとうございます。しかし、まだ理解できません。
もう頭がパンクしそうです。
なぜ残りの7枚を同じ種類のカードとみなせるのか、不思議です。

69:学術
18/09/18 23:22:21.96 bdccv7Cm.net
あほな解き方だぞそれ。

70:132人目の素数さん
18/09/18 23:38:20.57 dotA1T5U.net
>>66
問題
A1,A2,B1,B2,C1,C2,E,F,G,Hの10枚のカードがある。
横一列に並べたとき、左から2番目がB1、3番目がEになる、または、
2番目がB2、3番目がEになる確率は?
というのと同じ
答え
並べ方の総数は、10!通り。2番目がB1、3番目がEになる並べ方は、
2番目にB1、3番目にEを置き、残り8箇所に自由にカードをおいてよいので、8!通り
2番目がB2、3番目がEになるのも同様なので、求められている確率は 
2*8!/10! =2/(10*9)=1/45

71:学術
18/09/18 23:40:20.37 bdccv7Cm.net
最後まで叩いて類推すればいいじゃない。

72:学術
18/09/18 23:40:57.43 bdccv7Cm.net
順列に確率を求めるのが運の尽きだよ


73:学術
18/09/18 23:41:23.64 bdccv7Cm.net
乱雑にカードを並べてみてさ。

74:132人目の素数さん
18/09/19 00:16:19.17 pjeh/wJ3.net
>>68
ありがとうございます!この解答だと理解できました。

75:132人目の素数さん
18/09/19 01:07:44.14 +Ofa35sM.net
自殺をしたら地獄に落ちますか?

76:132人目の素数さん
18/09/19 01:23:15.74 wiQUfdGa.net
N組のカップル(合わせて2N人)が無作為に横一列に並ぶ
どのカップルについても彼氏と彼女が隣り合わない確率を求めよ
N組のカップルをnとおくと
q={2^n+2^(n-1)-(n-1)^2-3}/{2^(n+2)-(n+2)^2+7}
この関数をゼータ関数を参考にして修正してくれ~(・ω・)ノ

77:132人目の素数さん
18/09/19 01:26:10.92 uTGU7Tww.net
>>46
こちらわかる方いませんか?

78:132人目の素数さん
18/09/19 01:54:19.45 nLnx1y/v.net
>>49
文字 x, y を使って単項式 43xy の形で表された正整数 43xy の約数を
見た目から「具体的に」すべて挙げると 1、43、x、y、43x、43y、xy、43xy となるが、
x≧3、y≧2 で x^2-xy+y^21(≧2) は1を割り切らないことはすぐ分かるので、議論上は
>>43xy の約数をすべて挙げると43、x、y、43x、43y、xy、43xy となるから
としても何ら問題は生じない。

79:132人目の素数さん
18/09/19 02:05:04.03 l8Z4jqyy.net
>>46 >>75
f(x, y) = 1/(1+xx+yy)
 = Σ[n=0, ∞] (-1)^n (xx+yy)^n
 = Σ[n=0, ∞] (-1)^n Σ[j=0, n] C[n, j] x^{2j} y^{2n-2j}
 = Σ[j=0, ∞] Σ[k=0, ∞] (-1)^{j+k} C[j+k, j] x^{2j} y^{2k}
(0, 0) の周りだからマクローリン展開か?

80:132人目の素数さん
18/09/19 02:10:13.84 nLnx1y/v.net
>>49
>>76の「x^2-xy+y^21(≧2)」は「x^2-xy+y^2(≧2)」。
再度書くが、単項式 43xy の形で表された正整数 43xy の約数を
「見た目から具体的に」すべて挙げると 1、43、x、y、43x、43y、xy、43xy
となる。

81:132人目の素数さん
18/09/19 02:13:40.84 pbeFETFR.net
>>46,75
1/(1+x^2+y^2)
=Σ(-1)^n(x^2+y^2)^n
=Σ(-1)^nC[n,k]x^(2k)y^(2n-2k)
=Σ(-1)^(k+l)C[k+l,k]x^(2k)+y^(2l)

82:132人目の素数さん
18/09/19 02:19:03.59 pbeFETFR.net
>>74
>q={2^n+2^(n-1)-(n-1)^2-3}/{2^(n+2)-(n+2)^2+7}
これ何?
そもそも漸化式前スレで出てるやん。
この q それ満たしてないやん。

83:132人目の素数さん
18/09/19 02:21:39.68 wiQUfdGa.net
この関数を漸化式のすべての点を通るように
ゼータ関数を参考にして修正してくれ~(・ω・)ノ

84:132人目の素数さん
18/09/19 02:33:00.35 ZxE0BCCu.net
F(n)=log (2n n) ※底は2とする
のとき
O(F(n))を求めよ。
ヒント
e(n/e)^n≦n!
とする

お願いします!!

85:132人目の素数さん
18/09/19 02:34:35.39 ZxE0BCCu.net
(2n n)= 2n C nです

86:132人目の素数さん
18/09/19 03:20:57.68 xM+4SJQn.net
>>81
ゼータ関数を参考にした結果救いようがないと判明した。

87:132人目の素数さん
18/09/19 03:39:38.95 Ck89eeKN.net
>>82
log C[2n n]
= log 2n! - 2logn!
~(1/2)log(4πn)+2n log(2n/e) - log2πn-2nlog(n/e)
= (1/2)log(4π)+(1/2)log(n)+2n log(n)+2n log(2)-2n - log2π- log n-2nlog(n)
= -(1/2)log(n) + 2n log(2) - (1/2)logπ
= log (4^n/√(πn))

88:132人目の素数さん
18/09/19 03:45:35.63 l8Z4jqyy.net
>>74
 q[1] = 0, q[2] = 2/7, q[3] = 5/14, q[4] = 12/35, q[5] = 29/86 → 3/8,
[前スレ.609] から
 a[1] = 0, a[2] = 1/3, a[3] = 1/3, a[4] = 12/35, a[5] = 47/135 → 1/e,
 a[n] = a[n-1] + {1/(2n-1)(2n-3)} a[n-2],

89:132人目の素数さん
18/09/19 03:45:36.34 ZxE0BCCu.net
>>85
どこからπがでてくるんですか?

90:132人目の素数さん
18/09/19 03:50:35.27 l8Z4jqyy.net
>>87
 √(2πn)・(n/e)^n ≒ n!
から

91:132人目の素数さん
18/09/19 04:22:24.86 ZxE0BCCu.net
>>88
π使わないで出せませんか

92:132人目の素数さん
18/09/19 05:47:43.58 LXDQ8jJn.net
Σ[q-n-1, j=l](-1)^(j-1) C(q-1, n+j)[C(j, l)-C(j+1, l)]=0
になる理由がどうしてもわかりません。
おしえてください。
ここでCは2項係数です。

93:132人目の素数さん
18/09/19 06:46:06.14 h607bjyl.net
>>66
A1,A2,B1,B2,C1,C2,D,E,F,Gと書かれたカードを用意して、
10!通り全ての並べ方を網羅する
次に、
A1,A2,C1,C2,D,F,Gの7枚のカードの文字を、X1~X7にそれぞれ書き換える
こうすると、B1,B2,E,X1~X7のカード10枚を使った並べ変え方10!通りになるが、文字が変わっただけなので確率は全く同じ
要するに、この2つは等価と言ってるだけ。

94:132人目の素数さん
18/09/19 06:50:02.48 h607bjyl.net
「B2枚、X7枚を区別しないとする順列」を求めるときの計算は、結局X1~X7に番号を振った時の全パターン10!通りを用意した後、
B1B2、X1~X7を区別しないとして2!*7!で割ってるのと同じ。

95:132人目の素数さん
18/09/19 07:35:03.80 l8Z4jqyy.net
>>89
 y = log(x) は上に凸だから
 log(k) > ∫[k-1/2, k+1/2] log(x) dx,
より
log(n!) = Σ[k=2, n] log(k)
 > log(2) + ∫[5/2, n+1/2] log(x) dx
 = (n+1/2)log(n+1/2) -n +2 + log(2) - (5/2)log(5/2)
 > (n+1/2)log(n) -n + (5/2) + log(2) - (5/2)log(5/2)     (*)
 = (n+1/2)log(n) -n + log(√6),
*) log(n+1/2) - log(n) = log(1 +1/2n) = - log{1 -1/(2n+1)} > 1/(2n+1),
 {log(k-1)+log(k)}/2 < ∫[k-1, k] log(x) dx,
より
log(n!) = Σ[k=2, n] log(k)
 < (1/2)log(2) + ∫[2, n] log(x) dx + (1/2)log(n)
 = (n+1/2)log(n) -n +2 - (3/2)log(2)
 < (n+1/2)log(n) -n + log(√7),
∴ √(6n)・(n/e)^n < n! < √(7n)・(n/e)^n,


96:132人目の素数さん
18/09/19 07:37:20.54 IjLvLKf4.net
>>76
>>78
相変わらず馬鹿過ぎて話にならんな
笑ったwwwww
誤答おじさんの頭の悪さはどうにもならんwwwww

97:132人目の素数さん
18/09/19 07:41:50.52 h607bjyl.net
>>76
12は8も9も割り切らないけど、8×9=72は割り切りますよね

98:132人目の素数さん
18/09/19 07:53:19.31 h607bjyl.net

5-4-1):x^2-xy+y^2 が xy を割り切るとき。すると、xy の最大の約数は xy なることに着目すると x^2-xy+y^2=xy としてよい。
ここですね

99:132人目の素数さん
18/09/19 08:05:38.72 l8Z4jqyy.net
>>93 補足
 ∫ log(x) dx = x log(x) - x,
 {2 ・ (2e/5)^2.5}^2 = 6.079003 > 6
 {e^2 / 2^(3/2)}^2 = 6.824768754 < 7

100:132人目の素数さん
18/09/19 08:30:40.68 PDm2LGeS.net
>>73
まだ落ちてる自覚無いの?
おめでたいもんだ

101:132人目の素数さん
18/09/19 09:08:26.22 Fu0oOLgN.net
クラス会の費用を集めるのに全体で800円余る予定で一人1700円ずつ集めたが、予定 よりも全体で8000円多く費用がかかったので、一人300円を追加して集めたところ、ちょうど支 払うことができた。このとき、クラス会でかかった費用は全部で何円か、求めなさい。
これ分かる人いますか

102:132人目の素数さん
18/09/19 09:40:52.15 OD14AjpY.net
>>90
q-n-1=lのとき
Σ[q-n-1, j=l](-1)^(j-1) C(q-1, n+j)[C(j, l)-C(j+1, l)]
= Σ[l, j=l](-1)^(j-1) C(q-1, n+j)[C(j, l)-C(j+1, l)]
= (-1)^(l-1) C(n+l, n+l)[C(l, l)-C(l+1, l)]
はあきらかに0にならんけど?

103:132人目の素数さん
18/09/19 10:04:13.39 LXDQ8jJn.net
>>100
URLリンク(fast-uploader.com)
この画像の最後の等式見てください。0になってます。

104:132人目の素数さん
18/09/19 10:15:46.78 OD14AjpY.net
>>101
式ちがうやん????

105:132人目の素数さん
18/09/19 10:17:13.94 LXDQ8jJn.net
>>102
どこが?

106:132人目の素数さん
18/09/19 10:20:41.40 OD14AjpY.net
>>101,102
失礼。最後の行ね。なんでだろう?

107:132人目の素数さん
18/09/19 10:41:35.93 OD14AjpY.net
>>101
そもそもそのjpegの最初n行と最後の行に q = l+n+1 代入して成立してないんじゃね?
一行目=


108:(-1)^(l-1)C[l+n+1,l+n]C[l,l] + (-1)^lC[l+1,l]=(-1)^(l+1)(l+n+1-l-1)=(-1)^(l+1)n 最終行=C[l+n,n+l-1] = l+n で合ってない。



109:132人目の素数さん
18/09/19 11:11:40.33 nLnx1y/v.net
>>94-96
>互いに素ではなくない?
xとyが互いに素でないとする。
xとyに共通する素因数を p_1, …, p_n とする。 各 i=1,…,n に対して、p_i の指数を e_i とする。
xだけの素因数を q_1, …, q_m とする。各 i=1,…,m に対して、q_i の指数を a_i とする。
yだけの素因数を r_1, …, r_k とする。各 i=1,…,k に対して、r_i の指数を b_i とする。
xy を x^2-xy+y^2 で割った商をaとする。すると、a(x^2-xy+y^2)=xy、
x=(p_1)^{e_1}・…・(p_n)^{e_n}×(q_1)^{a_1}・…・(q_n)^{a_n}、 y=(p_1)^{e_1}・…・(p_n)^{e_n}×(r_1)^{b_1}・…・(r_n)^{b_n}   で、
x^2-xy+y^2=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{2a_1}・…・(q_n)^{2a_n}、
          -(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_n)^{a_n}×}×(r_1)^{b_1}・…・(r_n)^{b_n}
          +(p_1)^{2e_1}・…・(p_n)^{2e_n}×(r_1)^{2b_1}・…・(r_n)^{2b_n}、
xy=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_n)^{a_n}×}×(r_1)^{b_1}・…・(r_n)^{b_n}   なので、a(x^2-xy+y^2)=xy は
a( (q_1)^{2a_1}・…・(q_n)^{2a_n}-(q_1)^{a_1}・…・(q_n)^{a_n}×}×(r_1)^{b_1}・…・(r_n)^{b_n}+(r_1)^{2b_1}・…・(r_n)^{2b_n} )
=(q_1)^{a_1}・…・(q_n)^{a_n}×}×(r_1)^{b_1}・…・(r_n)^{b_n}
となる。X=(q_1)^{a_1}・…・(q_n)^{a_n}、Y=(r_1)^{b_1}・…・(r_n)^{b_n} とおけば、a(x^2-xy+y^2)=xy は
a(X^2-XY+Y^2)=XY となる。よって、X^2-XY+Y^2 は XY を割り切る。
あと a>1 とすると a≧2 で、相加・相乗平均の不等式から、a(X^2+Y^2)≧2aXY>(a+1)XY
だから、a(X^2-XY+Y^2)>XY となって、矛盾が生じる。よって、a=1 で、X^2-XY+Y^2=XY となる。
ここに、x^2-xy+y^2 と X^2-XY+Y^2、及び xy と XY は単項式としては同じ形。だから、上のような議論をすることは、実質的には
>5-4-1):x^2-xy+y^2 が xy を割り切るとき。すると、xy の最大の約数は xy なることに着目すると x^2-xy+y^2=xy としてよい。
と書くことと同じで、何も式の形としては変わっていない。変わったのは、xとyが互いに素でないときも考えて細かい議論をするかどうかの違い。


110:132人目の素数さん
18/09/19 11:22:16.75 OD14AjpY.net
>>106
>xy を x^2-xy+y^2 で割った商をaとする。
xy≦x^2-xy+y^2じゃね?
a=0、あまりx^2-xy+y^2になるよ?

111:132人目の素数さん
18/09/19 11:53:58.09 fbWt698J.net
>>106
昔から態度ばかり一人前だけど
対称式の頃から本当に成長してないな
もし数学の勉強をしてるのだとしたら
ここまで何年も最底辺レベルのまま成長しない奴も珍しいぜ

112:132人目の素数さん
18/09/19 11:58:58.59 Gn6ogjJL.net
後藤さん引退宣言したんでないの?

113:132人目の素数さん
18/09/19 12:13:15.00 nLnx1y/v.net
>>107
いわれてみるとそうだな。>>94-96は一体何だったんだろう。
>>94-96
>互いに素ではなくない?
xy≦x^2-xy+y^2 だから、xy を x^2-xy+y^2 で割ったときの商は0で余りをaとする。すると、x^2-xy+y^2+a=xy、
a≠0 とすると、(x-y)^2>-a で、(x-y)^2=-a に反し矛盾するから、a=0、故に。x^2-xy+y^2+a=xy。
蛇足だが、>>106のqの添え字mと、rの添え字kの書き間違いが何ヶ所かあるから、訂正して読んでほしい。
主に途中の派手な式のところにある。

114:132人目の素数さん
18/09/19 12:21:59.79 nLnx1y/v.net
ところで、コーコー数学や受験数学でデカルトの葉線ってやっていたっけ?
デカルトの葉線は何に書いてあるんだ?

115:132人目の素数さん
18/09/19 12:45:15.55 bI/clKdo.net
ある数列に対して、それが漸化式として表される場合、
その数列を作る漸化式はただ一つに定まりますか?

116:132人目の素数さん
18/09/19 13:03:00.53 dSRmi3XW.net
>>99
48000円

117:132人目の素数さん
18/09/19 13:06:19.96 iMuVMgfo.net
>慶應義塾大学大学院理工学研究科
>KiPAS数論幾何グループ
>『辺の長さが全て整数となる直角三角形と二等辺三角形の組の中には、
>周の長さも面積も共に等しい組が(相似を除いて)たった1組しかない』
>という、これまで知られていなかった定理の証明に成功した。
↑これってどのくりあ凄いことなの?
数学界の功績で言えばどのくらいですか?論文として今年度のトップ10くらいに入る?

自然数で表面積が等しく、かつ体積が等しい立体の組み合わせ
は存在するの?
その場合、立体 3つ1組 ですか?

118:132人目の素数さん
18/09/19 13:16:28.72 X/om76cf.net
>>114
トップ10に入るような業績ではないけど長く記憶されそうな業績。
そのような立体があるかは分からない。多分無い可能性が高いだろう

119:132人目の素数さん
18/09/19 14:26:28.35 RUXqakpI.net
自殺をしたら地獄に落ちたりするのかが気になる。

120:132人目の素数さん
18/09/19 14:43:47.61 08zNaTf2.net
>>111 ggrks
URLリンク(www.k-kyogoku.com)
2015年横浜市大/医
x^3-3ax+y^3=0 (a>0) で定義されるデカルトの葉線の囲まれる部分の面積
答え:3a^2 / 2
数Ⅲの教科書

121:132人目の素数さん
18/09/19 14:47:01.97 Byy4q6sb.net
>>114
慶応の論文で出てきた直角三角形と二等辺三角形を底辺に持ち、高さが自然数の三角柱って
自然数で表面積が等しく、かつ体積が等しい立体の組み合わせにならないか?
高さは自然数なら何でもいいので無限にある

122:132人目の素数さん
18/09/19 14:47:20.90 9kPkmN8N.net
>>112
無限にある

123:132人目の素数さん
18/09/19 14:55:20.32 X/om76cf.net
>>112
数列による
本質的には1つに定まるものが多いんじゃないか?(隣接2~3項の関係のみで表し、既約なもの)
高校数学までの範囲なら全部定まるのでは

124:132人目の素数さん
18/09/19 15:00:25.63 Gn6ogjJL.net
「既約なもの」ってなあに?

125:132人目の素数さん
18/09/19 15:38:19.64 08zNaTf2.net
>>120
一般にはきまらない。収束の条件も無しに1つに定まれば苦労しない。 >>119 が正解。

126:132人目の素数さん
18/09/19 15:41:42.32 xWCfGFrt.net
xy平面上の曲線Cを、媒介変数θを用いて
x=2(cosθ)^2-3(cosθ+sinθ)
y=6(sin[2θ])
と定義する。
Cで囲まれる領域の面積を求めよ。

127:132人目の素数さん
18/09/19 16:03:20.74 nLnx1y/v.net
>>107
>>xy を x^2-xy+y^2 で割った商をaとする。
>xy≦x^2-xy+y^2じゃね?
>a=0、あまりx^2-xy+y^2になるよ?
x≧y と仮定していて x≧3、y≧2 だから、x=y≧3 のときもあり得て、
このときは xy=x^2 は x^2-xy+y^2=x^2 で割り切れて a=1 となる。見落としがあった。
>94-96、>107
>>110
>>107
>いわれてみるとそうだな。>>94-96は一体何だったんだろう。

>>94-96
>>互いに素ではなくない?
>xy≦x^2-xy+y^2 だから、xy を x^2-xy+y^2 で割ったときの商は0で余りをaとする。すると、x^2-xy+y^2+a=xy、
>a≠0 とすると、(x-y)^2>-a で、(x-y)^2=-a に反し矛盾するから、a=0、故に。x^2-xy+y^2+a=xy。
のところは削除。>>106の添え字を訂正して読めばいい。

128:132人目の素数さん
18/09/19 16:04:52.60 wiQUfdGa.net
>>84
具体的にゼータ関数のどの部分を参考にしましたか?

129:132人目の素数さん
18/09/19 16:12:05.22 fbWt698J.net
>>124
毎度の事だけど
もう正解は出た後だから
無駄に長いだけで、間違いだらけな答案は要らないと思うの

130:132人目の素数さん
18/09/19 16:21:42.40 nLnx1y/v.net
>>94-96    (>>106の訂正。主に、添え字のみ訂正。文章の内容は大体同じ。)
>互いに素ではなくない?
xとyが互いに素でないとする。
xとyに共通する素因数を p_1, …, p_n とする。 各 i=1,…,n に対して、p_i の指数を e_i とする。
xだけの素因数を q_1, …, q_m とする。各 i=1,…,m に対して、q_i の指数を a_i とする。
yだけの素因数を r_1, …, r_k とする。各 i=1,…,k に対して、r_i の指数を b_i とする。
xy を x^2-xy+y^2 で割った商をaとする。すると、a(x^2-xy+y^2)=xy、
x=(p_1)^{e_1}・…・(p_n)^{e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}、 y=(p_1)^{e_1}・…・(p_n)^{e_n}×(r_1)^{b_1}・…・(r_k)^{b_k}   で、
x^2-xy+y^2=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{2a_1}・…・(q_m)^{2a_k}、
          -(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}
          +(p_1)^{2e_1}・…・(p_n)^{2e_n}×(r_1)^{2b_1}・…・(r_k)^{2b_k}、
xy=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}   なので、a(x^2-xy+y^2)=xy は
a( (q_1)^{2a_1}・…・(q_m)^{2a_m}-(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}+(r_1)^{2b_1}・…・(r_k)^{2b_k} )
=(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}
となる。X=(q_1)^{a_1}・…・(q_m)^{a_m}、Y=(r_1)^{b_1}・…・(r_k)^{b_k} とおけば、a(x^2-xy+y^2)=xy は
a(X^2-XY+Y^2)=XY となる。よって、X^2-XY+Y^2 は XY を割り切る。
仮に a>1 とすると a≧2 で、相加・相乗平均の不等式から、a(X^2+Y^2)≧2aXY>(a+1)XY
だから、a(X^2-XY+Y^2)>XY となって、矛盾が生じる。よって、a=1 で、X^2-XY+Y^2=XY となる。
ここに、x^2-xy+y^2 と X^2-XY+Y^2、及び xy と XY は単項式としては同じ形。だから、上のような議論をすることは、実質的には
>5-4-1):x^2-xy+y^2 が xy を割り切るとき。すると、xy の最大の約数は xy なることに着目すると x^2-xy+y^2=xy としてよい。
と書くことと同じで、何も式の形としては変わっていない。


131:132人目の素数さん
18/09/19 16:23:45.49 nLnx1y/v.net
>>126
>>127でもどうぞ。

132:132人目の素数さん
18/09/19 16:38:05.23 +AYEmU2z.net
Mathematica を使っています。
出力結果を人間が普通書くのと同じように出力させることはできないのでしょうか?
URLリンク(imgur.com)
↑例えば、これは3つの2次以下の多項式を直交化したものです。
出力結果は人間では考えられない形をしています。
人間が書くのと同じように出力してほしいという需要は非常に強いと思いますが、
なぜ、 Mathematica でそのような出力を選択するようなモードが�


133:ネいのでしょうか? そんなに実現するのが難しいのでしょうか?



134:132人目の素数さん
18/09/19 16:38:09.23 nLnx1y/v.net
>>94-96
>>127の途中式の部分
>x^2-xy+y^2=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{2a_1}・…・(q_m)^{2a_k}、
>          -(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}
>          +(p_1)^{2e_1}・…・(p_n)^{2e_n}×(r_1)^{2b_1}・…・(r_k)^{2b_k}、
>xy=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}   なので、a(x^2-xy+y^2)=xy は
>a( (q_1)^{2a_1}・…・(q_m)^{2a_m}-(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}+(r_1)^{2b_1}・…・(r_k)^{2b_k} )
>=(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}

>x^2-xy+y^2=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{2a_1}・…・(q_m)^{2a_m}、
>          -(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}
>          +(p_1)^{2e_1}・…・(p_n)^{2e_n}×(r_1)^{2b_1}・…・(r_k)^{2b_k}、
>xy=(p_1)^{2e_1}・…・(p_n)^{2e_n}×(q_1)^{a_1}・…・(q_m)^{a_m}×(r_1)^{b_1}・…・(r_k)^{b_k}   なので、a(x^2-xy+y^2)=xy は
>a( (q_1)^{2a_1}・…・(q_m)^{2a_m}-(q_1)^{a_1}・…・(q_m)^{a_m}×(r_1)^{b_1}・…・(r_k)^{b_k}+(r_1)^{2b_1}・…・(r_k)^{2b_k} )
>=(q_1)^{a_1}・…・(q_m)^{a_m}×}×(r_1)^{b_1}・…・(r_k)^{b_k}
に訂正。


135:132人目の素数さん
18/09/19 16:47:24.60 08zNaTf2.net
>>129
"Mathematica TeX"や"Mathematica LaTeX"でググれば?
自分の環境も書かないでそれ以上の回答は期待できないよ、こっちもエスパーじゃないんだから

136:132人目の素数さん
18/09/19 17:09:34.72 +AYEmU2z.net
TeX の話ではなく、例えば、√を含んだ式が人間にとって違和感のある式になっているのを改善したいという話です。

137:132人目の素数さん
18/09/19 17:15:00.45 08zNaTf2.net
>>132 ggrks

138:132人目の素数さん
18/09/19 17:56:18.08 SDPqlDZx.net
>>123
x = 2(cosθ)^2-3(cosθ+sinθ) = cos(2θ)-3√2sin(θ+π/4)+1
y = 6sin(2θ)
θ+π/4=φとおいて
x = cos(2φ-π/2)-3√2sinφ+1 = sin(2φ)-3√2sinφ+1 = (2cosφ-3√2)sinφ+1
y = 6sin(2φ-π/2) = -6cos(2φ)
x=x(φ),y=y(φ)とすると
x(φ)=-x(-φ),y(φ)=y(-φ)より左右対称
0<φ<πでx<1、π<φ<2πで1<x
0<φ<π/2で
x(φ)-x(π-φ) = 4cosφsinφ=2sin2φ > 0
y(φ) = y(π-φ)
よって面積は
2∫[0,π/2]2sin2φ*12cos(2φ)dφ = 6

139:134
18/09/19 18:09:11.12 SDPqlDZx.net
計算は間違ってるけど方針はこれでいけると思う

140:132人目の素数さん
18/09/19 18:10:10.37 iMuVMgfo.net
>>118
あ、本当だ。
この三角形の組に厚みを足すだけでいいね。

141:132人目の素数さん
18/09/19 18:44:38.10 ACAGiZvC.net
>これまで知られていなかった定理の証明に成功した。
修士論文ならともかく、博士論文なら当たり前では
既知の結果の別証明なんて(それにより一般化・抽象化が出来て新規の結果が出てこない限り)殆ど研究業績として認められんがな

142:132人目の素数さん
18/09/19 19:24:18.72 ACAGiZvC.net
ああ、博士論文ではないのね
それにしても論文なら新規の結果であって当然では

143:132人目の素数さん
18/09/19 19:40:51.86 08zNaTf2.net
>>137
>既知の結果の別証明なんて(それにより一般化・抽象化が出来て新規の結果が出てこない限り)殆ど研究業績として認められんがな
おっとカントールへの悪口はそこまでだw

144:132人目の素数さん
18/09/19 19:41:49.99 yx5p5nJm.net
>>138
すごく頭悪そうなレスだな

145:132人目の素数さん
18/09/19 21:02:43.94 GeSf1kgj.net
>>99
y=1700*x-800+8000=(1700+300)x
x=24
y=48000
じゃだめ?

146:132人目の素数さん
18/09/19 21:44:48.43 uE2uC1cX.net
馬鹿みたいな質問なんですけど…
偏微分って結局何がしたいんですか?
何をどうしてるんですか?
何を求めたいのですか?

147:132人目の素数さん
18/09/19 21:47:51.75 JsWKDRjN.net
>>137-138
2004年にIBM Researchがパズルとして出題した問題だってよ
URLリンク(www.research.ibm.com)
スレリンク(newsplus板:549番)
スレリンク(newsplus板:608番)
スレリンク(newsplus板:653番)

148:132人目の素数さん
18/09/19 22:18:58.18 dHok8gN8.net
>>142
微分したいんですよ
あとあなたの専攻はなんですか?

149:132人目の素数さん
18/09/19 22:33:33.65 uE2uC1cX.net
>>144
微分したいのは分かるんですよ。
例えば一次変数の微分は曲線の一部分を限りなく小さくして直線として考え求めるっていう目的(?)があるじゃないですか
2変数関数は偏微分して何が求まるのか分からないんですよ

150:132人目の素数さん
18/09/19 22:34:02.34 S18XlP4A.net
任意の2次の正方行列Xに対してAX=XAを満たす行列Aはどんだ行列か。
途中計算も含めてお願いします

151:132人目の素数さん
18/09/19 22:39:58.67 uE2uC1cX.net
>>146
単位行列の定数倍かな
Aの行列をabcd
Xの行列をefghとして等式を満たす値を見つける

152:132人目の素数さん
18/09/19 22:44:14.87 dHok8gN8.net
>>145
軸方向の接線の傾きを求めてます

153:132人目の素数さん
18/09/19 22:49:17.88 uE2uC1cX.net
>>148
馬鹿ですみません。
もう少し詳しくお願いします

154:132人目の素数さん
18/09/19 22:55:44.82 dHok8gN8.net
>>149
曲面に接する接面ができますよね
その面に上に直線を考えることができますけど、これはいろいろありますよね
xで偏微分する時は、x軸が正射影になるような直線を考えます
偏微分は直線の傾きを表します

めんどくさいですよね?
混乱するだけなので、普通に多変数のときの微分は偏微分って言うんだなーでいいんですよだから

155:132人目の素数さん
18/09/19 23:02:56.59 PaYlAUvO.net
1からNの数字の中から連続するk個の塊をm個取る組み合わせ数をN, k, mで表せ
ただし重複はなしとし、N >= k*m とする
(k=1のときは通常の組み合わせ C[N, m])
連続するk個の塊というのは、例えばN=5,k=2の場合
(1,2), (2,3), (3,4), (4,5) のことで、ここでさらにm=2だったら
(1,2)と(3,4), (1,2)と(4,5), (2,3)と(4,5) の3組が答えになります
よろしくおねがいします

156:132人目の素数さん
18/09/19 23:03:58.24 uE2uC1cX.net
>>150
あー。なんとなーく分かりました
曲面をxやyを固定して切断した時に出来る曲線の傾きって感じですか?
面倒ですね…w
しかし数学科なものでどういう意味かちゃんと理解しときたいのです…

157:132人目の素数さん
18/09/19 23:11:06.77 s7uju5jz.net
死後の世界ってありそうだよな・・・・。

158:132人目の素数さん
18/09/19 23:13:17.81 yy7XD51R.net
数学科なら、たとえF欄以下だったとしてもここできくより担当の講師かTAにきいた方がいいと思うが。

159:132人目の素数さん
18/09/19 23:13:29.59 dHok8gN8.net
>>152
あと方向微分とかいうのも調べておきましょう
偏微分は個人的には図形的イメージより数式でイメージできた方が良いと思います

160:132人目の素数さん
18/09/19 23:20:29.57 4b08hYvS.net
>>151
C[N-m*(k-1),m]
でいいんじゃない?

161:132人目の素数さん
18/09/19 23:21:22.93 uE2uC1cX.net
>>155
わかりました。ありがとうございます

162:132人目の素数さん
18/09/19 23:42:03.84 PaYlAUvO.net
>>156
ありがとうございます
計算してみるとそれで合っていそうなんですが
どういうふうに考えてその式を導いたのでしょうか?
よろしければ考え方を教えてくださいm(_ _)m

163:132人目の素数さん
18/09/20 00:09:33.17 nSUDamRJ.net
例えば、N=12、k=3、m=2とすると、
○○○○○○○○○○○○

○○○●●●○●●●○○
のような選び方がいくつあるかという問題だけど、●●●を■に置き換えると
○○○■○■○○
となる。逆に
○○○○○○○○
から、二つを選ぶ。例えば、
○■○○○○■○
とすると、ここで■を●●●に置き換えれば、
○●●●○○○○●●●○
になる。このように、どちら側にも変換可能。
この変換の時、いくつ減らせばいいかを考えると、●●●が■になるのだから、
つまり、k個を1個にするので、(k-1)個減り、
それが、m箇所あるので、m*(k-1)減ることになる。これをNから引けばよい。
ということで、C[N-m*(k-1),m]が出てくる

164:132人目の素数さん
18/09/20 00:17:47.42 zRtMQ4MM.net
>>159
なるほど!
すごくわかりやすいです!
図まで書いてくれて本当にありがとうございます
おかげさまで完全に理解できました

165:132人目の素数さん
18/09/20 01:57:40.94 7+n0UQHR.net
>>90
l ≦ q-n とする。
>>101 の画像は 要するに
S(q, l, n) = Σ[j=l, q-n] (-1)^{j-l} C(q, n+j) C(j, l)
 = Σ[j=l, q-n] (-1)^{j-l} {C(q-1, n+j) + C(q-1, n+j-1)} C(j, l)
 = Σ[j=l-1, q-n-1] (-1)^{j-l} C(q-1, n+j) C(j, l)   ← C(l-1,l)=C(q-1,q)=0
  + Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) C(j+1, l)  ← jをずらす
 = Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) {C(j+1,l) - C(j, l)}
 = Σ[j=l-1, q-n-1] (-1)^{j+1-l} C(q-1, n+j) C(j, l-1)
 = S(q-1, l-1, n)
を示す式で、これから
 S(q, l, n) = S(q-l, 0, n),
となる。
S(q', 0, n)
 = Σ[j=0, q'-n] (-1)^j C(q', n+j) C(j, 0)
 = Σ[j=0, q'-n] (-1)^j C(q', n+j)
 = Σ[j=0, q'-n] (-1)^j {C(q'-1, n+j) + C(q'-1, n+j-1)}  ← C(q'-1,q')=0
 = C(q'-1, n-1),
から
 S(q, l, n) = C(q-l-n, n-1),


166:132人目の素数さん
18/09/20 02:16:08.86 7+n0UQHR.net
>>161 訂正
q-l ≧n≧1 のとき
 S(q-l, 0, n) = C(q-l-1, n-1),
q-l = n のとき 1,
n=0 のとき
 S(q-l, 0, n) = (1-1)^(q-l) = δ_{q-l, n}
でした。

167:132人目の素数さん
18/09/20 03:46:06.21 7+n0UQHR.net
>>134 >>135
蛇足ですが…
0<φ<π/2 で
 x(φ) = √{1-(y/6)^2} -3√(1+y/6) +1,
 x(π-φ) = -√{1-(y/6)^2} -3√(1+y/6) +1,
 x(φ) - x(π-φ) = 2√{1-(y/6)^2} = (1/3)√(36-yy),
 y = -6cos(2φ),
 dy = 12sin(2φ)dφ,
S/2 = (1/6)∫[-6, 6] 2√(36-yy) dy = (1/6) (半径6の円の面積) = 6π,
S = 12π.

168:132人目の素数さん
18/09/20 04:56:34.13 7+n0UQHR.net
>>117
x^3 -3axy +y^3 = 0,
Descar?
x^3 -3axy +y^3 = (x+y+a){xx-xy+yy-a(x+y)+aa} - a^3,
から
∴ x+y+a = a^3 /{xx-xy+yy -a(x+y) +aa} → 0, |x|+|y|→∞
∴ 漸近線は x+y+a = 0,

169:132人目の素数さん
18/09/20 05:10:52.38 Ajky0sy3.net
媒介変数tを用いて表されるxy平面上の曲線
x=3cos(t+π/4)+4sin(t)
y=cos(t-π/3)+sin(t+π/6)
を考える。
以下、実数tは0≦t<2πの範囲を動くものとする。
xの最大値は( ア )であり、yの最小値は( イ )である。
dy/dx=0となる点は全部で( ウ )個ある。
したがって、Cが自己交差する点は全部で( エ )個ある。

170:132人目の素数さん
18/09/20 07:40:17.52 PyzagyfR.net
>>165
グラフを描いてみた。
URLリンク(i.imgur.com)

171:132人目の素数さん
18/09/20 07:51:03.09 peDjPlNM.net
>>143
自分でも解けないもんパズルにすなや

172:132人目の素数さん
18/09/20 08:26:45.49 /JkfMF/D.net
1/sinxの不定積分をy=cosxで置換してやってみたのですが
結果を微分してももとに戻りません……
どこで間違ったのか教えて下さいm(_ _)m
URLリンク(i.imgur.com)

173:132人目の素数さん
18/09/20 08:27:45.69 /JkfMF/D.net
最後は誤記で、-1/sinxとなって、正負が逆になってしまうということです。

174:132人目の素数さん
18/09/20 08:37:58.27 14zKVOkG.net
>>169
ならんけど
微分の計算過程を全部上げろ
ていうか単純計算の確認はwolframalphaでやれ

175:132人目の素数さん
18/09/20 09:30:20.77 sA3mNheb.net
さすがにこのレベルで先生に頼っちゃダメだとは思うけど、ここに頼るよりまだマシかなぁ…
積分はあってる。
微分で(少なくとも)2カ所間違えてる。

176:132人目の素数さん
18/09/20 09:36:46.07 /JkfMF/D.net
f(x)が微分可能だとして
g(x)=log|f(x)| を微分すると
一般にg'(x)=f'(x)/f(x) これは合っていますよね?
2/sinx を微分するとlog|1 - cosx|ーlog|1 + cosx| +C (←模範解答)
=log|cosx - 1|ーlog|cosx +1| +C
log|cosx - 1|ーlog|cosx +1| を微分すると
-sinx / (cosx - 1) +sinx / (cosx +1)
=sinx *( (1/cosx + 1) - (1/cosx - 1))
=sinx * ( 2/-sin^


177:2x) = -2/sinx となって正負が逆転したのですが どこか計算ミスがあると思うんですが、どこがおかしいのでしょうか? すみませんがお願いしますm(_ _)m



178:132人目の素数さん
18/09/20 09:38:54.14 /JkfMF/D.net
あれ、普通に引き算間違えてますね……
もうダメだ

179:132人目の素数さん
18/09/20 09:41:34.15 sA3mNheb.net
もう一つどうしても言わせてくれ
絶対値は飾りっぽいけど、飾りじゃないからな。log(cosx-1)とかはまだ使っちゃダメだぞ

180:132人目の素数さん
18/09/20 09:44:38.54 7+n0UQHR.net
>>168 >>169
log|(cos(x)-1)| = log(1-cos(x)) = log(cos(x)-1) +iπ,
ですが、このiπは積分定数に繰り込めるので、結果に影響はないでしょう。
しかし 1/(cos(x)+1) - 1/(cos(x)-1) の計算ミスで符号が反対になったのはより深刻です。
簡単な分数計算ができてないのがイタイ。

181:132人目の素数さん
18/09/20 10:38:17.82 TFednSDK.net
>>146
146です。
この問題の行列の基本変形がわからないので3つめの変形の解説をお願いします
URLリンク(i.imgur.com)

182:132人目の素数さん
18/09/20 11:57:41.53 Icym1syH.net
0≦a<1でこちらの積分の値がπa^(n-1)になることを証明しろという問題です
高校までの変数変換で解けるらしいのですがわからないのでどうかお願いします
URLリンク(i.imgur.com)

183:132人目の素数さん
18/09/20 13:23:17.83 z1K1qGzT.net
>>177
分母を平方完成→因数分解→部分分数分解→和積公式
分母と分子見比べてf'/f or f(g)g' の形を見つける

184:132人目の素数さん
18/09/20 14:34:11.98 JTFgvHMK.net
霊能者や霊媒師が、自殺をした人の霊は猛烈に苦しみ、とてつもなく後悔していると言いますが、
やはり、死後の世界はあるということなのでしょうか?

185:132人目の素数さん
18/09/20 15:06:58.11 CBHJ7d6o.net
>>179
死後は二重
4✕5=20

186:132人目の素数さん
18/09/20 15:23:03.56 IpTsImPW.net
>>179
いいことを教えてやろう。
実は今生きているこちらが死後だ。 幻の大地!

187:132人目の素数さん
18/09/20 16:06:37.68 7+n0UQHR.net
>>165 >>166
長軸
 t = 0.830291
 (x, y) = (2.81788 1.953136)
 a = 3.42858
 傾角α = 0.60611
 tanα = 0.69315
 sinα = 0.56968
 cosα = 0.82187
短軸
 t = 2.401087
 (x,y) = (-0.298341 0.430414)
 b = 0.523702
 傾角β = -0.96468
 tanβ = -1.44269
 sinβ = -0.82187
 cosβ = 0.56968
離心率
 ε = √{1-(b/a)^2} = 0.988265
 x・cosβ + y・sinβ = b・cos(t+0.740505)
 -x・sinβ + y・cosβ = a・sin(t+0.740505)

188:132人目の素数さん
18/09/20 17:02:31.16 Ir2DZzfZ.net
この数式にピンと来た日、募集。
URLリンク(xn--o9j0bk1ld5hc9kqal9d7xxd.jp)
の数式って何ですか?

189:132人目の素数さん
18/09/20 21:50:27.40 rK7EjC0f.net
この人のカラダはどうしてこんなにエロいんですか?
賢い人教えて下さい
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

190:132人目の素数さん
18/09/20 21:51:14.77 rK7EjC0f.net
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

191:132人目の素数さん
18/09/20 21:52:24.79 rK7EjC0f.net
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

192:132人目の素数さん
18/09/20 21:53:17.36 rK7EjC0f.net
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

193:132人目の素数さん
18/09/20 21:54:11.60 rK7EjC0f.net
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

194:132人目の素数さん
18/09/20 21:55:01.43 rK7EjC0f.net
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

195:132人目の素数さん
18/09/20 22:10:56.69 +zFxMZL1.net
URLリンク(s3-ap-northeast-1.amazonaws.com)
不快な画像を貼り付けるユーザーに対し、
匿名掲示板「ガールズちゃんねる」は1月16日、
法的措置をとることを決定した
アンケートサイト「SurveyMonkey」上で発表し、
サイトからリンクしていた(現在公開終了)
運営会社ジェイスクエアードは
「弊社が公表したもので間違いございません」と答えたが、
それ以外については回答を控えるとしている
具体的には、
ゴキブリの画像を大量投稿する特定ユーザーがいるとのこと
警告や投稿禁止措置をとっても、IPアドレスや端末情報を変更し、
投稿を続けているそうだ
ガールズちゃんねるは、このユーザーに対し、
「威力業務妨害罪」での刑事告訴と、
民事では「業務妨害」による損害賠償請求をする予定で、
顧問弁護士が手続きを進めているという

196:132人目の素数さん
18/09/20 22:15:49.85 uGl5dFIN.net
>>190
申し訳ございませんでした。
失礼致します。

197:132人目の素数さん
18/09/21 00:28:15.09 0/n0sIEP.net
スレリンク(lovesaloon板)
これでも読んどけ!
童貞諸君!

198:132人目の素数さん
18/09/21 00:44:00.60 kiFkt26+.net
μ を (0, ∞) 上の σ 有限測度とする。∫[0, ∞] min(x, 1) μ(dx) < ∞ ならば
lim[x → 0+0] x μ(x, ∞)=0 であることを証明せよ。
バカなのでわかりません。教えて下さい。お願いします。

199:132人目の素数さん
18/09/21 00:49:26.68 7TwUYg+4.net
>>178
それがわからないのです……

200:132人目の素数さん
18/09/21 02:26:00.75 rgDs3VYK.net
>>193
その主張は正しくないし何を写し間違えたのかもよく分からん。
もう一度問題文を読み直してくれ。

201:132人目の素数さん
18/09/21 07:03:13.90 IY8FoIFx.net
>>190
これいいな、保存しておこう。

202:学術
18/09/21 09:14:38.90 AzK+Q3eB.net
ゼロというのは仮の仮象の数だと考えるべきだろ。無限とゼロはまた違うんだけど、
親和性が在るようでやはり異質だと思うよ。元をたどればやはり同じではないだろう。
交差して混ざり合っているかもしれないけど。あるところでは。ある時間に。

203:193
18/09/21 09:33:14.44 kiFkt26+.net
>>195
え?正しくないんですか?何か反例があるってことですか?問題文はこれで会ってる
と思います。反例があったら教えて下さいm(_ _)m

204:132人目の素数さん
18/09/21 11:42:03.62 L4/KH63z.net
自分は地理感覚が凄く悪くて、道路の名前とか位置関係とかがさっぱり分からないので、
もの凄く困っています。
これじゃあ車を運転し�


205:トどこかに行くことすらできません。 自分の知っている範囲内ならなんとかなるのですが、知らない所だとどっちに行ったりすれば良いのかすら分かりません。 そこで質問があるのですが、そういう地理感覚などを鍛えたり理解したりできるようになるための学校みたいな所は無いでしょうか? 教えてください。



206:132人目の素数さん
18/09/21 11:50:12.27 0uIdegM1.net
固有多項式が同一である行列たちはどのような行列たちなのでしょうか?

207:132人目の素数さん
18/09/21 12:24:42.61 rgDs3VYK.net
>>198
μ(dx) = x^(-1.99) dx

208:132人目の素数さん
18/09/21 13:44:47.84 ubQRlnLb.net
>>200
固有値が同じ

209:学術
18/09/21 14:01:43.93 AzK+Q3eB.net
田植えや軍隊の列は限界文明なのかな。

210:132人目の素数さん
18/09/21 14:05:01.18 0uIdegM1.net
>>202
{
{1, 0, 0},
{0, 1, 0},
{0, 0, -1}
}

{
{-1, 0, 0},
{0, -1, 0},
{0, 0, 1}
}
の固有値は 1 と -1 ですが、それらの固有多項式は異なります。

211:132人目の素数さん
18/09/21 14:34:49.07 b65ucfBh.net
>>182
 6(3-2√2)sin(2t) + (-9 +12√2 +2√3)cos(2t) = 0,
より
 tan(2t) = -{(7/2) +3√2 +√3 +(2/3)√6}
    = -11.1076846565436145
長軸
 t = 0.830291020343980
 π/2-t = 0.7405053064509164
 (x, y) = (2.817877632166427 1.953135730826556)
 a = 3.428581854483754
 傾角α = 0.60609558521919
 tanα = 0.693122976147462
短軸
 t = 2.401087347138877
 π-t = 0.7405053064509164
 (x, y) = (-0.298333540955400 0.430419350132652)
 b = 0.5237019368186468
 傾角β = -0.964700741575706
 tanβ = -1.442745420961562
 aa + bb = 29 - 12√2 = 12.02943725152286
 ab = (3√2 +3√6 -8)/2 = 1.795554957734410
 α-β = π/2,


212:132人目の素数さん
18/09/21 14:50:07.02 b65ucfBh.net
>>200
・相似な行列
・三角行列で、対角要素が同じ(か入替えた)もの。
 (固有ベクトルの情報はたぶん関係ない…)

213:132人目の素数さん
18/09/21 16:03:33.27 /rLfReAr.net
教えて頂きたいです。お願いします。
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

214:132人目の素数さん
18/09/21 16:04:58.70 9KpTXP1n.net
>>200
「固有値が(重複度も込めて)同じ」というのが普通.
気取っていうならば,「ジョルダン分解の半単純部分が相似」.

215:学術
18/09/21 16:37:21.28 AzK+Q3eB.net
うーん数学の少数は乱数化しないと、植物や動物だけじゃないけど、
反抗期を迎えてしまうだろう。誰もいないのに。

216:学術
18/09/21 16:38:01.94 AzK+Q3eB.net
解までいくことだよ。それで合うことも少ない事であるなあ。

217:学術
18/09/21 17:34:25.41 AzK+Q3eB.net
心理はいいけど、精神の数学術への適応や、返し、出来栄えが最悪なのが
現代数学の一つの分析哲学、言語記号論的 なテーマになりえると思う。

218:学術
18/09/21 17:55:36.24 AzK+Q3eB.net
ダークカオス、の方が有利ということだよな。ラightもたまには。

219:132人目の素数さん
18/09/21 18:05:30.84 b65ucfBh.net
>>165
(ア) √(25-12√2),  t = 2arctan[(8-3√2)/{3√2+2√(25-12√2)}] = 0.72481223
(イ) -2,        t = 4π/3,
(ウ) 2,         t = π/3、4π/3.
(エ) 0


220:  y = 2cos(t -π/3) = 2sin(t+π/6),



221:132人目の素数さん
18/09/21 18:28:52.84 /sYU4+YY.net
東大法学部で断然トップの人は、どれくらい数学や物理学ができますか?
文系なので大したことないですか?

222:学術
18/09/21 18:35:36.95 AzK+Q3eB.net
数学は数学を集めていないから、スレ違う二人という意味で、国立の法学部
も優秀。僕はストラトプールとか ドレッシー デンぐらいしか知りません。
世界ランキングでも上位の下級ぐらいに若い才能があって・・・・。再上位は
隠し子でしょう。

223:132人目の素数さん
18/09/21 18:45:00.78 0/n0sIEP.net
成立学園1-F担任の岩崎柾典先生がヤバイ。
成立学園に勤めるのは4年目。
担当科目は数学。
女子テニス部の顧問をしている。
何がヤバイというと、2013年4月から2015年3月まで宮前平中に働いていたらしく、女子中学生とsexしたことがバレて、飛ばされたから。
今でも教師を続けているのがすごく不思議な感じだよ。
岩崎先生って、ツイッターとFacebookをやってるみたいだから、覗いてみては?
嘘だと思うなら、電話してみてね!
03-3902-4411
スレリンク(lovesaloon板)
URLリンク(2ch.vet)
URLリンク(ja-jp.facebook.com)
URLリンク(twpro.jp)
URLリンク(www32.atwiki.jp)
URLリンク(twitter.com)
URLリンク(twitter.com)
URLリンク(twitter.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
(deleted an unsolicited ad)

224:132人目の素数さん
18/09/21 19:29:18.14 0uIdegM1.net
2次形式の対角化をする際、なぜ、直交変数変換にこだわるのですか?

225:132人目の素数さん
18/09/21 20:23:46.22 1wE0lhFg.net
計算量が重すぎる逆行列の計算が避けられるから

226:132人目の素数さん
18/09/21 21:44:21.94 0uIdegM1.net
P を正則行列とする。
Inverse[P] * A * P
が対角行列になるような P を求めるということは考えますが、
Transpose[P] * A * P
が対角行列になるような P はなぜ考えないのでしょうか?

227:132人目の素数さん
18/09/21 22:00:46.92 Et5XzdMw.net
対角化は累乗が簡単に求められるからするんです
A^2=PP^(-1)APP^(-1)APP^(-1)=PΛΛP^(-1)
転置でやっても面白いこと起きませんよね

228:132人目の素数さん
18/09/21 22:13:42.26 rgDs3VYK.net
>>219
Aが実対称行列のとき
Transpose[S] * A * S
が±1,0からなる対角行列になるようなSが存在する(シルベスターの標準形)

229:132人目の素数さん
18/09/21 22:32:55.10 1wE0lhFg.net
>>219
自己同型じゃないから

230:132人目の素数さん
18/09/21 23:33:51.12 Zy8fxgFP.net
「概念」は存在すると言えるのでしょうか?
まず、「事実」は存在すると言えるのかを考えたいと思います。
例えば、目の前にリンゴが全部で10個あるとします。
そうすると、「リンゴが全部で10個あるという事実」は存在すると言えるのでしょうか?
さらに言うと、「リンゴがあるという事実」は存在すると言えるのでしょうか?
目の前にあるリンゴは、物理的に姿形のあるモノとして存在しますが、
そのリンゴがあるという事実はどう考えるのが妥当なのでしょうか?

231:132人目の素数さん
18/09/21 23:46:54.06 xIGgPrYx.net
>>223
哲学板行け

232:132人目の素数さん
18/09/22 01:08:29.78 U16PLyIz.net
自殺して無になってもう二度と有になりたくない。

233:132人目の素数さん
18/09/22 05:35:06.20 OM3JlOD/.net
>>74
とり


234:あえず、n=1~4で一致する式ができた ∵q={2^n+2^(n-1)+n-4}/{2^(n+2)+5n-14} n=50のとき、 q=844424930131991/2251799813685366



235:132人目の素数さん
18/09/22 12:33:04.37 brB6HAEO.net
位相空間Xがコンパクトかつハウスドルフならば正規空間であることの証明ですが
これって選択公理使ってますか?

236:132人目の素数さん
18/09/22 13:08:17.22 brB6HAEO.net
>>227
自己解決しました
選択公理使いませんね

237:132人目の素数さん
18/09/22 13:17:11.20 E+fu1y5y.net
今日も「解いた側」の圧勝かぁ・・・。
毎日毎日、ラクラク解ける問題ばかりだから常勝なんだよね・・・。
たまには、解けない解けないっと悩んで負けてみたい、それが今の切実な悩み。

238:132人目の素数さん
18/09/22 13:17:32.96 P0TUp6em.net
>>224
哲学に相手してもらえないからだろ

239:132人目の素数さん
18/09/22 13:19:29.31 brB6HAEO.net
>>229
では
スレリンク(math板:649番)
お願いします

240:132人目の素数さん
18/09/22 13:36:06.55 giDGx0lh.net
>>231
全ての階に1台ずつ置いとけ

241:132人目の素数さん
18/09/22 13:40:35.45 4SLlyIcr.net
>>207
[9] △OABにおいて、辺OAを 1:3 に内分する点をC, 辺OBを 3:1 に内分する点をDとし、CDを 2:1 に外分する点をEとし、↑OA = ↑a, ↑OB = ↑b とする。
↑OE を↑a, ↑b で表わせ。

[10] 平行四辺形OABCにおいて、↑OA = ↑a, ↑OC = ↑b とする。
次のベクトルを、↑a, ↑b を用いて表わせ。
(1) ↑AB
(2) ↑CA
(3) BCの中点をDとしたときの ↑OD
(4) AB を 2:1 に内分する点Eに対する ↑OE
(5) ↑DE
(6) DEの中点Fに対する ↑OF

↑OC を ↑c にしないセンスがすごい…

242:132人目の素数さん
18/09/22 13:59:22.52 4SLlyIcr.net
>>36
x -1/3 = X, y -1/3 = Y とおくと
x^3 + y^3 - (xx+42xy+yy) = X^3 + Y^3 -42XY -(43/3)(X+Y) -130/27,
チョトちがう

243:学術
18/09/22 13:59:34.99 O8zrOAbJ.net
URLリンク(www.youtube.com)
URLリンク(www.youtube.com)
文学などは音楽をかけるとすらすら解ける気がするが。

244:132人目の素数さん
18/09/22 15:03:59.24 4SLlyIcr.net
>>177 >>178
 sinθ / (1-2a・cosθ+aa)
= (1/2i){e^(iθ) - e^(-iθ)} / {[1-a e^(iθ)][1-a e^(-iθ)]}
= (1/2ai) { 1/[1-a e^(iθ)] - 1/[1-a e^(-iθ)] }
= (1/2ai)Σ[m=0,∞] {a e^(iθ)}^m - Σ[m=0,∞] {a e^(-iθ)}^m   (← |a|<1)
= (1/2i)Σ[m=0,∞] a^{m-1} {e^(imθ) - e-(-imθ)}
= Σ[m=0,∞] a^{m-1} sin(mθ)
とフーリエ展開する。
和積公式で
∫[0,2π] sin(mθ) sin(nθ) dθ
 = (1/2)∫[0,2π] {cos((m-n)θ) - cos((m+n)θ)}dθ
 = π(δ_{m-n,0} - δ_{m+n,0})


245:132人目の素数さん
18/09/22 17:28:12.84 6MDoWgOF.net
((sinsinθ),(coscosθ))(0≦θ<2π)の軌跡は?

246:132人目の素数さん
18/09/22 17:44:08.01 E+fu1y5y.net
わからないんですね

247:132人目の素数さん
18/09/22 18:28:26.02 OM3JlOD/.net
N組のカップル(合わせて2N人)が無作為に横一列に並ぶ
どのカップルについても彼氏と彼女が隣り合わない確率を求めよ
N組のカップルをnとおくと
漸化式があっているかどうかわからないけれど
n=5まで一致する式ができた
   10n^3-n^4-35n^2+62n+12{2^(n-1)+2^n-


248:6} q=――――――――――――――――――――――――    2{10n^3-n^4-35n^2+80n+6{2^(n+2)-18}}



249:132人目の素数さん
18/09/22 19:05:29.32 yCmk73wm.net
>>239
n=1で0にならんじゃん。

250:132人目の素数さん
18/09/22 19:12:23.02 ouXSnsFP.net
n=∞で、0になってくれてない気もする

251:132人目の素数さん
18/09/22 19:31:12.05 OM3JlOD/.net
wolframだとちゃんとn=1で0になる

252:132人目の素数さん
18/09/22 23:16:08.17 7sPQU0EZ.net
東大数学科で断然トップの人とビル・ゲイツはどっちの方が頭が良いですか?

253:132人目の素数さん
18/09/22 23:26:37.47 eYxhvzOT.net
>>239
>漸化式があっているかどうかわからないけれど
この時点で0点

254:132人目の素数さん
18/09/22 23:29:02.75 brB6HAEO.net
数学というかTeXに関する質問ですが
数式環境内で部分的に地の文にするにはどうしたらいいですか?
例えば、
abc
$x = y. abc f(x)$
と書いた場合、1行目と2行目ではabcの書体・サイズが変わりますが、2行目のabcも1行目のabcと同じ出力にしたいんです。
$x = y.$ abc $f(x)$
という書き直しじゃなく
$$は増やさずに何らかのコマンドで出来ませんか?

255:132人目の素数さん
18/09/22 23:32:44.95 s7wd8owS.net
>>245
\section{TeX の時間} %%% 第 XIII 節 %%%
スレリンク(math板)
amsmath.sty も使っているなら \text{abc} でいけるんじゃね

256:132人目の素数さん
18/09/22 23:48:18.71 brB6HAEO.net
>>246
どうもです。

257:132人目の素数さん
18/09/22 23:50:26.48 JkJqy3uR.net
リアルタイムに TeX の出力結果が確認できるソフトってありますか?

258:132人目の素数さん
18/09/23 07:41:08.23 xBCN748C.net
シルベスターの慣性法則の「慣性」とは何ですか?

259:132人目の素数さん
18/09/23 11:00:29.56 +iiypNk7.net
電車の中でジャンプしても後方のしきりに激突しないこと

260:132人目の素数さん
18/09/23 11:58:52.00 t0wrmxFm.net
お願いします
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)

261:132人目の素数さん
18/09/23 12:17:16.99 PH84y1u6.net
ここはわからない問題を書くスレッドです
お願い事をするスレでも誰かに答えてもらえるスレでもありません

262:132人目の素数さん
18/09/23 12:47:41.41 vx+NXTHe.net
表現は何でもいいんだよ

263:132人目の素数さん
18/09/23 13:31:14.25 n07erhZD.net
>>237
y = cos(√[1-{arcsin(x)}^2]) ≒ Σ[k=0,∞] c_k x^{2k}  (|x|≦sin(1))
c_0 = cos(1),
c_1 = (1/2)sin(1),
c_2 = (1/24){7sin(1) -3cos(1)}
c_3 = (7/720){22sin(1)-15cos(1)}
c_4 = (1/13440){2427sin(1)-2114cos(1)}
たるんだ放物線?
>>207 >>251
 >>233 を参照。


264:132人目の素数さん
18/09/23 13:45:25.70 n07erhZD.net
>>210
先従解始(先づ解より始めよ) …… 「戦国策」
(大意) 逆向きに解くんでしょうね。
>>237
y = cos(√[1-{arcsin(x)}^2]) ≒ 0.540302 + 0.420735x^2 + 0.177891x^4 + 0.101187x^6 + 0.0669681x^8 + …

265:132人目の素数さん
18/09/23 16:01:10.87 dVHamUso.net
なぞなぞです。
お願いします。
URLリンク(i.imgur.com)

266:132人目の素数さん
18/09/23 16:25:50.11 dVHamUso.net
>>256
自決しました

267:132人目の素数さん
18/09/23 16:29:59.78 uN5miIY2.net
四色定理「平面上のいかなる地図も、隣接する領域が異なる色になるように塗り分けるには4色あれば十分だ」
この命題中の「平面上のいかなる地図」が地球儀のような「球面上のいかなる地図」となった場合、何色あれば塗り分けるのに十分なんでしょう?

268:132人目の素数さん
18/09/23 16:54:40.83 ZHLzUkgh.net
5色…とか?
最初の平面の地図だ


269:と、地図の外側のスペースは無として定義されている。 この無の部分に1つの色を与えて灰色とする。 地図を丸めて球体を作る。 この時、東西南北の端がくっつく部分で、重複が起こらないように灰色の欠片をあてて継ぎ接ぎする。 4色+灰色で5色



270:132人目の素数さん
18/09/23 17:04:18.46 PH84y1u6.net
塗り方を変えれば4色で済むかもしれませんよね?

271:132人目の素数さん
18/09/23 17:04:38.93 krrkUlnT.net
>>258
球面も彩色数は4
いかなる球面上の地図も、彩色数を変えずに平面地図に置き換えることが可能

272:132人目の素数さん
18/09/23 17:27:45.96 uN5miIY2.net
みなさん、ありがとう。
>>261
球面地図と平面地図は置き換え出来るんですね。

273:132人目の素数さん
18/09/23 18:28:52.28 6r+HqQTq.net
置き換えできるとかではなく偶然球面も4色で良かったってだけかもしれないんじゃない?

274:132人目の素数さん
18/09/23 18:44:33.37 VgtK+kEe.net
いや、球面上の地図なら平面上の地図の問題に還元できるやろ?
球面上の地図が与えられたら、いずれかの領域の内点をとって、その点を極としてRiemann球\{極}と平面の一対一対応を考えればいい。

275:132人目の素数さん
18/09/23 19:24:32.54 Z1V74VmH.net
数2の質問です
aを実数の定数とする。xy平面上に2円
c1: x^2+y^2=5
c2: (x-a)^2+(y-2a)^2=2がある。
(1) c1,c2が外接、内接するようなaの範囲をそれぞれ求めよ
(2) a=1のときc1,c2の2交点の座標
解説おねがいします

276:132人目の素数さん
18/09/23 19:53:11.93 dnCpmMyL.net
>>265
ちゅうしんとちゅうしんのきょりをかんがえる
多分教科書に似たような問題ある(傍用にもある)
交点の座標は計算する
計算の仕方も大事

277:132人目の素数さん
18/09/23 19:56:52.35 7FSyqEIr.net
>>265
c1の中心が(0,0)で半径が√5
c2の中心が(a,2a)で半径が√2
中心間の距離は(√5) |a|
(1)
外接する時
中心間の距離が、半径の和に等しいので
(√5) |a| = (√5) + √2
a = ±{1 + √(2/5)}
内接する時
中心間の距離が、半径の差に等しいので
(√5) |a| = (√5) - √2
a = ±{1 - √(2/5)}
(2)
x^2 +y^2 = 5
(x-1)^2 +(y-2)^2 = 2
上から下を引いて
2x +4y -5 = 3
x + 2y = 4
x = -2y +4
最初の式に代入して
(-2y +4)^2 +y^2 = 5
5y^2 -16y +11 = 0
(5y -11)(y-1) = 0
y = 11/5, 1
y = 11/5 のとき x = -2/5
y = 1 のとき x = 2

278:132人目の素数さん
18/09/23 21:21:19.85 ZHLzUkgh.net
>>264
平面を球面に置き換えて同じ結論がえられるってまじかよ、
それじゃ >>259がバカみたいじゃん。

279:132人目の素数さん
18/09/23 21:30:56.29 7FSyqEIr.net
>>268
というか、この手の発想は3色では不可能な事の証明でもよく使われる
知らない人は悩むってだけで
正四面体の面の塗分けは3色では不可能だから
面の1つに穴を開けて
(面はゴムのようなものでできていると思って)平面上に広げれば
3色で塗分け不可能な地図ができる
って具合に

280:132人目の素数さん
18/09/23 23:18:08.51 KSTpRWA6.net
四色定理の空間バージョンの定理ってありますか?
つまり、例えば、立体パズルにおいて隣接してる(0以上の面積を共有してる)ピースは別の色にして塗るということにした場合
何色あれば十分ですか?

281:132人目の素数さん
18/09/23 23:57:17.72 23TP2PYS.net
訂正
0より大の

282:132人目の素数さん
18/09/24 00:14:43.51 ccjS23v2.net
>>270
空間をいくつかの領域にわけるという


283:意味なら明らかに何色あっても無理。 100色用意しても101完全グラフ用意して各点にたいし、その点とその点から出てる確辺のまん中までを1領域とする分割を考えれば100色では無理。 E^2に埋め込めない一般の場合という意味ならその地図を埋め込める種数ごとに必要最低限度の色数は決定されてる。 https://ja.wikipedia.org/wiki/%E5%9B%9B%E8%89%B2%E5%AE%9A%E7%90%86



284:132人目の素数さん
18/09/24 01:52:24.23 Ple4QkIq.net
>>239
n=6まで一致する式ができた
   2n^5-63n^4+500n^3-1605n^2+2594n+297×2^(n+1)-2616
q=―――――――――――――――――
   66{10n^3-n^4-35n^2+80n+6{2^(n+2)-18}}


285:132人目の素数さん
18/09/24 02:45:52.27 f7uXOSwA.net
最適化問題です。
どういった方法で解を出すかという方針
だけでも教えていただきたいです。

変数Piとして、それ以外は定数とする。
min 煤mi=1からN]Pi
条件
0≦Pi≦Pmax(i=1,,,N)
Σ[i=1からN]A×Pi+煤mi=1からN、ただしi≒j]Σ[j=1からN]√(PiPj)×B ≧C

286:132人目の素数さん
18/09/24 02:47:36.97 f7uXOSwA.net
>>274
?になっている部分はシグマです

287:132人目の素数さん
18/09/24 04:36:49.10 WgV4wCes.net
数学IIの図形と方程式の問題です。
(1)以下の不等式で表されるxy平面上の領域Dを図示せよ。
(x+y-1)(-2x+y-3)(-x-2y+4)≧0
(2)一辺の長さ1の正三角形Tをxy平面上に置く。TとDの重なる部分の面積を最大にするようにTを置くときのGの座標を求めよ。
ただしGはTの重心である。

288:132人目の素数さん
18/09/24 11:20:03.20 C29H7b6e.net
>>236
Σ[m=0,∞] a^m e^(imθ)
 = Σ[m=0,∞] {a e^(imθ)}^m
 = 1/{1-a e^(iθ)}
 = {1-a e^(-iθ)}/(1-2a・cosθ+aa)
 = {(1-acosθ) +ia sinθ}/(1-2a・cosθ+aa),
の虚部から
Σ[m=1,∞] a^m sin(mθ) = a・sinθ/(1-2a・cosθ+aa),
一方、実部から
Σ[m=0,∞] a^m cos(mθ) = (1-a cosθ)/(1-2a・cosθ+aa),
1/(1-2a・cosθ+aa) = {1/(1-aa)}{1 + 2Σ[m=1,∞] (a^m)cos(mθ)},
2a cosθ/(1-2a・cosθ+aa) = (1+aa)/(1-2a・cosθ+aa) -1,

289:132人目の素数さん
18/09/24 16:56:33.37 Y2Cz0M7v.net
(X_i) は i∈I を添え字集合とする集合列とします
Pr_i は Π_i X_i の第i射影とします
知られている通り、 Pr_i(Π_j X_j)=X_i ですが、この証明(⊇について)には選択公理を使いますよね?

290:132人目の素数さん
18/09/24 17:18:28.20 3sb6z9vD.net
定理 … 公理を用いて証明された命題
公理 … 証明が不要で前提とする事柄
↑ とあります。
高校までの数学で作られてからもっとも新しい公理 (理論) って何ですか?
複素平面? 微積分?

291:132人目の素数さん
18/09/24 17:28:30.79 nFKM7Z34.net
>>279
高校数学はそういう難しいことは考えないで適当に作られてますから考えるだけ無駄です

292:132人目の素数さん
18/09/24 17:33:33.55 cbJ4AGw0.net
確率は割と新しい気がする

293:132人目の素数さん
18/09/24 21:09:11.61 uyI4OG9o.net
曲線Cをy=sin(πx)の0≤x≤1の部分とする。
また以下の曲線Dと直線Eはいずれも、Cとx軸とで囲まれる部分の面積を2等分するという。
正数a,bの大小を比較せよ。
D y=asin(πx/2)
E: y=bx

294:132人目の素数さん
18/09/25 00:16:21.34 Mf+IIU9l.net
>>282
曲線Cとx軸で囲まれる部分の面積は
 ∫[0,1] sin(πx) dx = [ -(1/π)cos(πx) ](x=0,1) = 2/π = 0.636619772367581343
a = 0.5


295:857864376268 b = 0.8062893052025 ∴ a < b



296:132人目の素数さん
18/09/25 00:25:49.82 PNTWAghu.net
>>283
aとbは数値計算に依らず求められるはずですがどうでしょうか

297:132人目の素数さん
18/09/25 01:52:02.77 LFmeOtFE.net
>>284
Cとx軸で囲まれた領域の中でDとEは交差する。x=1のときDはEより下にくるからa<b

298:132人目の素数さん
18/09/25 04:44:40.72 Mf+IIU9l.net
>>283
C: y = sin(πx),
D: y = a sin(πx/2), a = 0.5857864376268
E: y = b x,     b = 0.8062893052025
CとDの交点 (x,y) = (0.810763906019775 , 0.5600968657158)
CとEの交点 (x,y) = (0.782633029520911 , 0.6310286460088)
DとEの交点 (x,y) = (0.559244088133690 , 0.4509125272599)


299:132人目の素数さん
18/09/25 12:50:34.34 OMFyU4Ie.net
>>282
グラフにしてみた。
URLリンク(imagizer.imageshack.com)

300:132人目の素数さん
18/09/25 15:41:23.42 gzqxMuxe.net
2^2-1^2、3^2-2^2、4^2-3^2・・・
と続く数列の答えはそれぞれ2n-1になるらしいけど、
方程式では解けてもなぜそうなるか疑問です。
丁寧に答えて下さる方いませんか

301:132人目の素数さん
18/09/25 15:53:57.58 RwC3xJIG.net
計算したらそうなったんですよね
だからそういうもんだ、でいいんですよ
そのための文字式なんです
何にでもそういう理由を求めようとするのは、疲れるだけであまり本質ではないことが多いですからやめといた方が良いでしょうね
でも今回の場合は正方形考えるといいかとしれないですね
玉を正方形に並べます
一列増やしてちょっと大きな正方形作るにはどうすれば良いでしょうか

302:132人目の素数さん
18/09/25 16:10:47.12 Mf+IIU9l.net
>>284
 aの方は
CとDの交点を(c, d) とおく。
 sin(πc) = a sin(πc/2),
 a = 2 cos(πc/2),
より
∫[0,c] {sin(πx) - a sin(πx/2)} dx = (1/2π)(4-aa) -(a/π)(2-a) = (1/2π)(2-a)^2,
これが 1/π に等しいから、
 a = 2-√2 = 0.585786437626905
 c = (1/π)arccos(2(1-√2)) = (2/π)arccos(1-(1/√2)) = 0.810763906019740
 d = sin(πc) = (√2 -1)√(2√2 -1) = 0.560096865715887
bの方は分かりませぬ…

303:132人目の素数さん
18/09/25 16:10:52.13 q3cJ7uMj.net
●●●○
●●●○
●●●○
○○○ +○
タテ3✕ヨコ3に並べた丸に●に、
○をタテ3コ、ヨコ3コ、角っこうめるためもう1コ付けると4✕4になりますね
3^2(もと●)  +  3*2+1(追加○) =4^2
こういうことです。

304:132人目の素数さん
18/09/25 17:34:12.78 gzqxMuxe.net
>>289
>>291
確かにそういう計算をしてることになりますね!数式って凄いなあ

305:132人目の素数さん
18/09/25 18:15:15.20 QJVCmX3z.net
次の無限級数が収束するxの範囲をそれぞれ求めよという問題です
一様収束ではなく収束なので解き方が分からないですどうかお助けを……
Σ[n=1,∞]1/(1+nx^n)
Σ[n=1,∞]1/(n^2-x)
Σ[n=1,∞]|x|/(1+|x|)^n

306:132人目の素数さん
18/09/25 18:49:12.43 Oj/s8CIQ.net
>>273
n=7まで一致する式ができた
   1783n^5-83n^6-15785n^4+71005n^3-166892n^2+198292n+1485×2^(n+3)-112080
q=――――――――――――――――――――――――
   66{63n^5-3n^6-545n^4+2405n^3-5572n^2+6892n+480(2^n-9)}


307:132人目の素数さん
18/09/25 20:56:27.99 LFmeOtFE.net
>>293
Σ[n=1,∞]1/(1+nx^n)
|x|<1のときは項が0に収束しない。|x|>1のときは絶対収束する。
x=1のときは対数発散する。x=-1のときはn=1の項が1/0になって未


308:定義。(n=1の項が無ければ条件収束) Σ[n=1,∞]1/(n^2-x) x=-1,-4,-9,-16,... なら1/0の項が出てくるので未定義。それ以外なら絶対収束する。 Σ[n=1,∞]|x|/(1+|x|)^n 具体的に計算できる。x=0のとき0、それ以外のとき1に収束する。



309:132人目の素数さん
18/09/25 21:41:16.32 n/GFgogk.net
集合Sに対して、P(S)でSの巾集合を表す。
Fin(S) := {A∈P(S)|Aは有限集合} とする。
Xを集合とする。
S⊆P(X)とする。
O(S)でSによって生成される開集合系とする。
O(S)を具体的に表したい。
O(S) = { ∪_{T ∈ F} ∩T | F ⊆ Fin(S) }
でいいんですかね?

310:132人目の素数さん
18/09/25 22:09:33.65 n/GFgogk.net
>>296
自己解決しました
この表し方でいいみたいですね

311:132人目の素数さん
18/09/25 23:14:24.80 w+XVQKQt.net
二次関数の最大と最小を求める時に最後
8a-4とかの文字式が答えになるんですがどこをどう代入すればこの式になるか分かりません
グラフは描けるんですが…

312:132人目の素数さん
18/09/25 23:15:45.63 8de8aW77.net
平方完成した余りなんでないのか?

313:132人目の素数さん
18/09/25 23:17:07.95 Y5pYVzUb.net
>>298
君は問題を端折らずに書いたほうがいい
もっと言えば画像で上げたほうがいい

314:132人目の素数さん
18/09/25 23:21:30.44 AMhR5pSd.net
>>295
ありがとうございます
過程も書いて頂けると助かります……

315:132人目の素数さん
18/09/25 23:50:07.51 w+XVQKQt.net
>>298
URLリンク(i.imgur.com)
解説お願いします

316:132人目の素数さん
18/09/25 23:57:46.88 Y5pYVzUb.net
>>302
どの問題について聞いてるの?
そのページのどの問題を解いても
8a-4なんて式は出てこないようだが

317:132人目の素数さん
18/09/26 00:00:10.49 Cc/6inZ7.net
>>301
Σ[n=1,∞]1/(1+nx^n)
|x|<1のときは項が0に収束しない。←自明
|x|>1のときは絶対収束する。←n≧2のとき |1+nx^n| > (n|x|^n)-1 > |x|^n と評価する。
x=1のときは対数発散する。← 1/(1+n) > ∫[n+1~n+2] (1/x) dx と評価する。
x=-1のときはn=1の項が1/0になって未定義。(n=1の項が無ければ条件収束)←絶対値が単調減少する交代級数は収束する。
Σ[n=1,∞]1/(n^2-x) 訂正
× x=-1,-4,-9,-16,... なら1/0の項が出てくる
○ x=1,4,9,16,... なら1/0の項が出てくる
xがこれらの値以外であるとき m^2-x>0 を満たすmを適当に選ぶと n≧m+1 のとき
n^2-x = (n-m)^2 + 2nm + m^2 - x > (n-m)^2
Σ[n=1,∞]|1/(n^2-x)| < Σ[n=1,m]|1/(n^2-x)| + Σ[n=m+1,∞]1/(n-m)^2 < ∞
Σ[n=1,∞]|x|/(1+|x|)^n
ただの等比級数の和

318:132人目の素数さん
18/09/26 00:16:43.51 m4inCFQe.net
>>304
本当に助かりました
丁寧にありがとうございます

319:132人目の素数さん
18/09/26 01:05:06.95 bHGY9i2p.net
>>303
適当な例題をアップしてしまったのが悪かったですね…
8a-4のことは忘れていただいて構いません
a<0のとき 最小値a^2+1
0≦a≦2のとき…
とあるんですが問題の始めに与えられた式y=x^2-2ax+a^2+1 (0≦a≦2)
からa^2+1などの文字式をどうやって導き出すのかが分からないんです

320:132人目の素数さん
18/09/26 01:41:12.56 2yFoJMu6.net
>>306
ちゃんと例題の真似をして解いたのか?
区間の両端か軸での値として計算すれば出てくるはず

321:132人目の素数さん
18/09/26 01:51:45.67 bHGY9i2p.net
>>307
解決しました、ありがとうございます!
難しく考えすぎていました…

322:132人目の素数さん
18/09/26 02:17:34.20 u24AtJNa.net
最強の概念は何ですか?

323:132人目の素数さん
18/09/26 02:21:47.30 5JKIcjJN.net
ヒマラヤさんは二項定理がわからない、最強の定理ですね

324:132人目の素数さん
18/09/26 02:23:48.47 u24AtJNa.net
真面目に教えてください。お願いします。

325:132人目の素数さん
18/09/26 02:27:12.23 5JKIcjJN.net
ヒマラヤさんは三角関数がわからない
これも大事ですね

326:132人目の素数さん
18/09/26 02:54:12.98 GaEXENYv.net
真面目に教えてください。お願いします。

327:132人目の素数さん
18/09/26 05:33:34.75 WJI1Ssah.net
∠B=�


328:レCである△ABCがある。 その辺CAを一辺とする正三角形△CADで、頂点Dが直線CAに関してBと反対側にあるようなものを作る。 このとき、以下の問いに答えよ。 (1)∠Bの内角を2等分する直線Lの上に△CADの内心Iが乗るという。△ABCの形状はどのようであるか述べよ。 (2)(1)において、内心Iを以下に置き換えた場合、△ABCの形状はどのようであるかを述べよ。  (i) 外心O  (ii) 重心G  (iii) 垂心H



329:132人目の素数さん
18/09/26 05:56:33.12 WJI1Ssah.net
大量の白板と黒板があり、どちらの板も一辺の長さが1の正方形の形状をしている。
いま床の上に白板1枚が置かれている。
この状態から次のような操作(T)を行う。
(T)表が出る確率が0.8のコインがある。
このコインを振って表が出れば、一番右側の板に白板1枚を貼り付ける。
ただし板が1枚の場合はその板を「一番右側の板」とみなす。以下も同様である。
裏が出れば、一番右側の板に黒板k枚を貼り付ける。ここでkは自然数である。
いずれの操作を行った場合も、板を貼り付けて出来上がった新しい板は、縦の長さが1、横の長さが1より大きい自然数の長方形となる。
このとき、以下の問いに答えよ。
(1)(T)を繰り返し、板の並びに「黒白黒」が現れた時点で操作を終了する。最終的に出来上がった長方形の横の長さの期待値E(k)をkで表せ。
(2)8≦E(k)≦10となるkの範囲を求めよ。

330:132人目の素数さん
18/09/26 06:22:33.36 WJI1Ssah.net
>>314
(2)は(1)と何も変わらねーじゃん

331:132人目の素数さん
18/09/26 07:54:54.86 roNfZuDf.net
5人中3人が1列に並ぶときの並び方の総数を求めなさい。
お願いします。。。

332:132人目の素数さん
18/09/26 10:59:00.34 TpX5a0Yg.net
>>317
それくらいはまず書き出せよ
どうすればもれなく書き出せるかを考えてみれば数式もたぶんわかる

333:132人目の素数さん
18/09/26 11:39:08.65 vAGGSnkZ.net
URLリンク(fast-uploader.com)
上の画像で式が成り立たないと思うんですけどどうやって証明するんですか?
u_2(0)が0じゃないと駄目なきがするのですが

334:132人目の素数さん
18/09/26 13:11:13.74 zomwMvsu.net
>>319
証明は、Casoratian の定義式だけあればよく、
C(r) = | u1(r) u2(r) |
    | u1(r+1) u2(r+1) |
  = u1(r) u2(r+1) - u2(r) u1(r+1)
  = u1(r) u1(r+1) {u2(r+1)/u1(r+1) - u2(r)/u1(r)}
  = u1(r) u1(r+1) Δ{u2(r)/u1(r)},
よって
u2(n)/u1(n) = u2(0)/u1(0) + Σ[r=0,n-1] Δ{u2(r)/u1(r)}
  = u2(0)/u1(0) + Σ[r=0,n-1] C(r)/{u1(r)u1(r+1)},
 ここで u2(0)=0 を使うと…
Casoratian はつまり Wronskian の 差分version かな。


335:132人目の素数さん
18/09/26 13:16:03.71 vAGGSnkZ.net
>>320
u2(0)=0とはどこにも書いてないんですけど?

336:132人目の素数さん
18/09/26 13:31:11.58 CV990pYj.net
>>319
これはどの教科書のexerciseですか?

337:132人目の素数さん
18/09/26 13:34:08.83 vAGGSnkZ.net
>>322
画像の黄色く光っているところの文字列をグーグルで検索してみてください

338:132人目の素数さん
18/09/26 13:59:29.99 S44lMWvY.net
>>323
あった。thx
URLリンク(books.google.co.jp)
&hl=ja&sa=X&ved=2ahUKEwjD_oTP8NfdA


339:hU1HjQIHSEoAmEQ6AEwDHoECEkQAQ#v=onepage&q=contemplate%20the%20second%20order%20difference%20equation&f=false



340:132人目の素数さん
18/09/26 14:25:32.07 zomwMvsu.net
〔問題〕
次の2階差分方程式を考えよう。
 u(n+2) + p1(n) u(n+1) + p2 u(n) = 0,
その解を u1(n),u2(n)、それらのCasoratian を C(n) とするとき
 C(n+1) = p2 C(n) = …… = (p2)^{n+1} C(0),
を示せ。
このスレも 過疎らし庵...


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch