18/09/19 17:56:18.08 SDPqlDZx.net
>>123
x = 2(cosθ)^2-3(cosθ+sinθ) = cos(2θ)-3√2sin(θ+π/4)+1
y = 6sin(2θ)
θ+π/4=φとおいて
x = cos(2φ-π/2)-3√2sinφ+1 = sin(2φ)-3√2sinφ+1 = (2cosφ-3√2)sinφ+1
y = 6sin(2φ-π/2) = -6cos(2φ)
x=x(φ),y=y(φ)とすると
x(φ)=-x(-φ),y(φ)=y(-φ)より左右対称
0<φ<πでx<1、π<φ<2πで1<x
0<φ<π/2で
x(φ)-x(π-φ) = 4cosφsinφ=2sin2φ > 0
y(φ) = y(π-φ)
よって面積は
2∫[0,π/2]2sin2φ*12cos(2φ)dφ = 6