18/08/20 13:40:14.23 2nGoGgVA.net
Faddeev がYang-Baxter 方程式を基に「量子逆散乱法」を研究していた。
Drinfeld がYang-Baxter 方程式から得られる[A] ある代数に余積構造 が入ることに気がつき、関数環の非可換変形を与える [B]Hopf 代数の構造を発見した。
Drinfeld はこの新構造を「量子群」と名づけた。
[A] 「量子群」とよぶべき対象上の関数環と双対的に、微分作用素のなすKac - Moody)リー環の展開環 である [B] 「Drinfeld - 神保の量子展開環」の Hopf 代数がある。
神保は、戸田格子 の差分化をLax 形式で行うのに必要な関係式を調べ、量子展開環の定義に至った。
これをまとめた本が
神保 道夫「量子群とヤン・バクスター方程式」
である。Kac - Moodyリー群と量子群の関係にフォーカスした代数的な本として
谷崎 俊之「リー代数と量子群」
がある。さらに圏論的な議論の入り口のテンソル圏まで書いてあるのが
山下 真「量子群点描」
である。量子群と結び目の関係は
村上 順「結び目と量子群」
が入門書。結び目の圏論的な議論は
伊藤 昇 「結び目理論の圏論 ー「結び目」のほどき方」
にある。