面白い問題おしえて~な 27問目at MATH
面白い問題おしえて~な 27問目 - 暇つぶし2ch968:132人目の素数さん
18/10/27 08:59:03.67 0lSGEQBN.net
>>941
列挙作業をコンピュータにさせているだけだから言語が違っても(バグがなければ)結果は一致する。

スレリンク(math板:141番)-142
乱数発生させての頻度から確率を推測しているわけではない。これが近似すれば列挙作業の検算にはなる。
読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。

969:132人目の素数さん
18/10/27 10:30:39.20 jxMEHoZP.net
elog[e]πとπlog[π]eの大小関係を示せ。
eを自然対数の底, πは円周率で, それぞれに
2.7<e<2.8, 3.1<π<3.2を与える。
綺麗な解法があります。

970:132人目の素数さん
18/10/27 10:41:28.15 XkgBNK5i.net
(log x)^2/x は 1≦x≦e^2 で単調増加。

971:132人目の素数さん
18/10/27 10:43:41.35 0lSGEQBN.net
六面体のサイコロでP君のサイコロは3面が1、Q君のサイコロは2面が1とする。
サイコロを降ってどちらか一方が1であればそちらが勝者。
どちらも1であるときは引き分け
どちらも1でないならば少なくともどちらかが1がでるまでサイコロをふる。
P君、Q君の勝つ確率を求めよ。

972:132人目の素数さん
18/10/27 10:51:00.39 gTtKGo5e.net
>>950
一回ごとに
P勝ち:3×(6-2) = 12通り、
Q勝ち:(6-3)×2 = 6通り、
引き分け:3×2 = 6通り。
∴ P(P勝ち) = 12/(12+6+6)、P(P勝ち) = 6/(12+6+6)、P(P勝ち) = 6/(12+6+6)。

973:132人目の素数さん
18/10/27 10:58:22.36 icIwdUt7.net
物理数学で面白いもんだいないの?

974:132人目の素数さん
18/10/27 11:14:16.36 0lSGEQBN.net
>>951
こんなことしなくても解けるんだね。
俺はこんな面倒なことして解いた。
方程式なしで解けるロジックを思いつくのはすごいなぁ
p=1/2
q=1/3
q: win
(1-p)*q + (1-p)^2*(1-q)*q+(1-p)^3*(1-q)^2*q+(1-p)^4*(1-q)^3*q+....
=(1-p)*q *( 1 + (1-p)*(1-q) + ((1-p)*(1-q))^2 + ((1-p)*(1-q))^3+...
let r=(1-p)*(1-q)=1/2 * 2/3 =1/3
=(1-p)*q *(1 + r + r^2 + r^3 + ...) = (1-1/2)*1/3 * 3/2 = 1/4 = 0.25
p:win
(1-1/3) * 1/2 * 3/2 = 0.5
draw 1-1/4-1/2= 0.25

975:132人目の素数さん
18/10/27 11:15:36.


976:21 ID:0lSGEQBN.net



977:132人目の素数さん
18/10/27 11:18:10.11 wVcil2U4.net
即興でつくった。
船内の加速度で1Gの加速度で船内の時間で1年加速し、船内の時間で1年減速したとき、進んだ距離は?船外の時間で所要時間は?
答え持ち合わせず。

978:132人目の素数さん
18/10/27 12:22:19.24 0lSGEQBN.net
>>954
Σ[1,∞](1/4)^i = 1/4 *(1-1/4)= 1/3
Pr[P:win]=1/2+1/3*1/2=2/3
Pr[Q:win]1/4+1/3*1/4=1/3
で出せるけど、等比数列使わないとどうやるんだろ?

979:132人目の素数さん
18/10/27 12:25:34.33 rzBY84ap.net
>>948
1<x<4 のとき
log(ex) = 1 + log(x)
 = 1 - 2log(1/√x)
 > 1 - 2(1/√x -1)      (log(y) < y-1)
 = 3 - 2/√x
 = √x + (2-√x)(√x -1)/√x
 > √x,             (1<√x<2)
∴ {log(ex)}^2 /x > 1,
x = π/e とおく。


980:132人目の素数さん
18/10/27 12:26:02.71 0lSGEQBN.net
>>941
別スレでは等確率とデタラメ書いてたよなぁ。
スレリンク(math板:87番)

読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。

981:132人目の素数さん
18/10/27 12:45:29.18 rzBY84ap.net
>>956
 P君が勝つ確率をp,Q君が勝つ確率をq とする。 p+q = 1,
 p = (1回で勝つ確率) + (2回目以後に勝つ確率)
  = (1回で勝つ確率) + (引分けの確率)・p
  = 1/3 + (1/2)p,
 q = (1回で勝つ確率) + (2回目以後に勝つ確率)
  = (1回で勝つ確率) + (引分けの確率)・q
  = 1/6 + (1/2)q,
∴ p=2/3, q=1/3.


982:132人目の素数さん
18/10/27 12:54:11.96 upNvrDEa.net
>>959
ありがとうございました。
すると>956は中学入試の問題にできるんだなぁ。

983:132人目の素数さん
18/10/27 12:57:39.78 n7pGg+WO.net
一回振ってpが1を出す確率が1/2なのにその一回でpが勝つ確率も1/2っておかしいだろ
>>951
>引き分け:3×2 = 6通り。
ここが間違い
双方が1を出す引き分けだけではなく、
どちらも1ではない引き分けも数えなくてはいけない

984:132人目の素数さん
18/10/27 13:02:09.59 upNvrDEa.net
>>961
最初の問題での設定は
どちらも1でないならば少なくともどちらかが1がでるまでサイコロをふる
という設定。

985:132人目の素数さん
18/10/27 13:23:25.24 HxTDXY2q.net
>>961
最初の一回でPが勝つ確率は1/3。

986:132人目の素数さん
18/10/27 13:45:06.98 wVcil2U4.net
P勝利をP、Q勝利をQ、引き分けをEとして

|P            |Q     |E     |←1回目で決着のうちP、Q、Eの比率が2:1:1 (2/3)
|P      |Q  |E  |            ←2回目で決着のうちP、Q、Eの比率が2:1:1 (2/9)
|P   |Q |E |                 ←3回目で決着のうちP、Q、Eの比率が2:1:1 (2/27)
……
結局全体での比率も2:1:1。


987:132人目の素数さん
18/10/27 13:46:12.70 n7pGg+WO.net
>>963
>>951が1/2と間違えてるから指摘しているだけです

988:132人目の素数さん
18/10/27 13:49:50.78 0ndh6N9Q.net
>>965
じゃ正解をおねがいします。

989:132人目の素数さん
18/10/27 17:34:30.00 OAQWCVH9.net
>>944
列挙して数え上げるには計算式は不要ですと?
ある事象AとBが起きるときの要素の個数を
洗い出しているだけだから根本的にアプローチが違うのです
査読能力のなさを露呈するのはやめなさい(´・ω・`)

990:132人目の素数さん
18/10/27 17:37:16.87 OAQWCVH9.net
>>945
別に否定はしませんが
P君が1/2でQ君が5/8という場合では
Q君がより早く宝に到達する可能性が高いことを
示しているだけです

991:132人目の素数さん
18/10/27 17:55:55.17 OAQWCVH9.net
■早まった一般化(Hasty generalization)
形式的な誤謬または詭弁の一つ
以下のような論証形式の推論をいう
類推の危険とも
例)
『読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ』
■解説
この文章は論理的に妥当ではない
少ない例から『読んだ人の時間を無駄遣いさせる』という
一般的な結論を導こうとしており、これが早まった一般化となる
つまり、自分が時間を無駄遣いさせられるという
一部の個別の事実から全体を判断していて、
それ以外の他スレ住人の中に、時間の無駄と思わない人がいる可能性が
全く考慮に入れられていないため、誤りになる

992:132人目の素数さん
18/10/27 18:00:00.36 upNvrDEa.net
>>967
効率化に必要なだけで必須じゃなうだろ。
組合せを全部列挙するのは計算式なくてもできる。

993:132人目の素数さん
18/10/27 18:13:40.35 JDW7fmwV.net
表面積1の立体の中で最も良い形の箱を求めよ
ただし、最も良い形の定義は
立体の体積をV,立体を平面に置いたときの接地面の面積をS,定数α>0として、
V+αSが最大となるものである

994:132人目の素数さん
18/10/27 18:17:12.53 OAQWCVH9.net
>>958
デタラメではない
前提条件次第で関数は変化する
宝の個数kを設定するかどうか、ポイントAをどう扱うかによって
複数の種類の関数を作ることができる

995:132人目の素数さん
18/10/27 18:21:47.28 0lSGEQBN.net
>>968
これだね。

当たりの確率ってなあに?
12部屋を順次12回探索するんだから確率1でいずれ当たりを引くんだけど。
あなた以外の人はどちらが早く当てるかを考えてる。

996:132人目の素数さん
18/10/27 18:23:42.83 0lSGEQBN.net
>>972
>複数の種類の関数を作ることができる
そりゃ、どちらも正しくないんだから、いくらでも捏造できるだろ。

997:132人目の素数さん
18/10/27 22:23:12.07 xN+LO4jv.net
>>966
正解はすでに多くの人が書いているように1/3
一回の試行でpが勝つ確率は
pが1を出しかつ q が1以外を出す確率 3/6 * 4/6 =1/3
一回の試行でqが勝つ確率は
qが1を出しかつ pが1以外を出す確率 2/6 * 3/6 =1/6
一回の試行で引き分け試合続行になる確率は
pq ともに1を出す確率 3/6 * 2/6 =1/6 と
pq ともに1以外を出す確率 3/6 * 4/6 =1/3 の和で 1/2

998:132人目の素数さん
18/10/27 23:29:04.09 0/HwMd6z.net
>>975
>>>950
> 六面体のサイコロでP君のサイコロは3面が1、Q君のサイコロは2面が1とする。
> サイコロを降ってどちらか一方が1であればそちらが勝者。
> どちらも1であるときは引き分け
> どちらも1でないならば少なくともどちらかが1がでるまでサイコロをふる。
> P君、Q君の勝つ確率を求めよ。
一回ごとに
Pの勝つ確率は1/3
Qの勝つ確率は1/6
引き分けの確率は1/6
振り直しの確率は1/3
で結局Pの勝つ確率は?

999:132人目の素数さん
18/10/27 23:51:21.67 j5ROwDaN.net
整数x,yについて 615+x^2=2^y を解け。

1000:132人目の素数さん
18/10/27 23:56:43.86 uNVYRk6v.net
>>976
>>950
>六面体のサイコロでP君のサイコロは3面が1、Q君のサイコロは2面が1とする。
>サイコロを降ってどちらか一方が1であればそちらが勝者。
>どちらも1であるときは引き分け
>どちらも1でないならば少なくともどちらかが1がでるまでサイコロをふる。
>P君、Q君の勝つ確率を求めよ。
1回目 P勝 1/3 Q勝ち 1/6 引き分け 1/6   (流れ 1/3)
2回目 P勝 1/9 Q勝ち 1/18 引き分け 1/18  (流れ 1/9)
3回目 P勝 1/27 Q勝ち 1/54 引き分け 1/54 (流れ 1/27)
……
結局 P の勝つ確率は?


1001:132人目の素数さん
18/10/28 00:35:14.99 wdFrILpF.net
>>977
yが奇数とするとx^2 - 2z^2 = -615が整数解をもつが 2 は mod 5 で平方剰余でないので矛盾。
よって y は偶数であり z = √(2^y) は整数で x^2 - z^2 = -615を満たす。
(z+x)(z-x) = 615により
(x,z) = (±307、±308)、(±101、±104)、(±59、±64)、(±13、±28)
が必要。
よって解は
(x,y) = (±59、12)。

1002:132人目の素数さん
18/10/28 00:48:48.16 5no3IAco.net
>>976
>引き分けの確率は1/6
>振り直しの確率は1/3
ああ、ごめんなさい。、誤解してました。
目が1:1のときは振り直さず引き分けになるんですね。
Pが勝つ確率は 1/3 * Σ{n=0..∞} 1/6 = 1/3 * 6/5 = 2/5
Qが勝つ確率は 1/6 * Σ{n=0..∞} 1/6 = 1/6 * 6/5 = 1/5
引き分けの確率は 1/3 * Σ{n=0..∞} 1/6 = 1/3 * 6/5 = 2/5

1003:132人目の素数さん
18/10/28 00:52:05.62 5no3IAco.net
間違えた
振り直しの確率は1/6じゃなく1/3だから
Pが勝つ確率は 1/3 * Σ{n=0..∞} 1/3 = 1/3 * 3/2 = 1/2
Qが勝つ確率は 1/6 * Σ{n=0..∞} 1/3 = 1/6 * 3/2 = 1/4
引き分けの確率は 1/6 * Σ{n=0..∞} 1/3 = 1/3 * 3/2 = 1/2
が正しい答え

1004:132人目の素数さん
18/10/28 11:52:21.40 x624ZJMX.net
A高校、B高校で試験をしたところ、男子の平均点も女子の平均点もA高校の方が上だったのに
男子女子合わせての平均点はB高校の方が上だったという。
本当にこのようなことがありえるのだろうか?

1005:132人目の素数さん
18/10/28 12:02:48.17 GWXw/AMj.net
>>982
シンプソンのパラドックス
ある仮想疾患の治癒率
      軽症   重症
国立大学  10/10  10/90
底辺私立  70/90  0/10
自然経過  40/50  5/50
国立大学の方が軽症・重症とも成績がよいが
総数比較では底辺私立の方が成績がよい。
この疾患は自然治癒率が45%とされています。
この疾患の底辺私立での治癒率は70%です。
これに対して国立大学での治癒率はわずか20%です。
という記述も嘘ではないね


1006:132人目の素数さん
18/10/28 12:59:47.77 F02xc/t9.net
>>982
A高校、B高校で試験をしたところ、男子の平均点も女子の平均点もA高校の方が上だったのに
男子女子合わせての平均点はB高校の方が上だったという。
A高校 男子10人平均90点 女子90人平均70点 総合平均(10*90+90*70)/100=72
B高校 男子90人平均80点 女子10人平均60点 総合平均(10*90+90*70)/100=78

1007:132人目の素数さん
18/10/28 19:07:52.08 x624ZJMX.net
>>983,984
シンプソンだったか! 名前が思い出せなかったんですよ。
男子女子、重症軽症の比率が(極端に)違うのがポイントのようですね。

1008:132人目の素数さん
18/10/28 21:20:58.71 t1NU8Nja.net
次スレは立てないのかね?

1009:
18/10/29 00:15:51.93 Es1mqcC9.net
>>926
>>924はあってんの?

1010:132人目の素数さん
18/10/29 00:26:30.49 59VF2v6C.net
>>986
次スレ (28問目)
スレリンク(math板)

1011:132人目の素数さん
18/10/29 01:24:42.27 faNbwzFX.net
>>987
A高校 男子10人平均90点 女子90人平均70点 総合平均(10*90+90*70)/100=72
B高校 男子90人平均80点 女子10人平均60点 総合平均(90*80+10*60)/100=78
の誤記

1012:イナ
18/10/29 03:33:57.58 Es1mqcC9.net
>>987
扇形OAB=3.14c㎡
△OAB=√7≒2.64c㎡
三日月形AB≒3.14-2.64
=0.5c㎡
ABを延長、半直線AB上にPから垂線PCを下ろす。
PC^2=(2√2+√6)^2+(√2)^2-4^2
=14+8√3+2-16
=8√3
扇形OABの高さPC=√(8√3)
扇形PAB=(1/2)AB・PC-三日月形AB
=(1/2)・2・√(8√3)-0.5
=√(8√3)-0.5
=3.2224193
≒3.22c㎡

1013:イナ
18/10/29 03:37:48.10 Es1mqcC9.net
>>990訂正。
扇形OAB=3.14c㎡
△OAB=√7≒2.64c㎡
三日月形AB≒3.14-2.64
=0.5c㎡
ABを延長、半直線AB上にPから垂線PCを下ろす。
PC^2=(2√2+√6)^2+(√2)^2-4^2
=14+8√3+2-16
=8√3
扇形OABの高さPC=√(8√3)
扇形PAB=(1/2)AB・PC+三日月形AB
=(1/2)・2・√(8√3)+0.5
=√(8√3)+0.5
=4.2224193
≒4.22c㎡

1014:603,977
18/10/29 05:22:06.71 Gent6ynX.net
>>604
正解
>>979
正解
URLリンク(youtube.com)

1015:132人目の素数さん
18/10/29 06:14:16.27 05AYJRp0.net
>>991
相変わらずの芸風だなぁ。
だいたい中学受験の問題で答えが
>√(8√3)+0.5
になるわけないのに。

1016:イナ
18/10/29 11:20:48.97 Es1mqcC9.net
AB=2㎝なわけないか。
>>991訂正。
扇形OAB=3.14c㎡
△OAB= c㎡
三日月形AB= c㎡
ABを延長、半直線AB上にPから垂線PCを下ろす。
PC^2=(2√2+ )^2+(√2)^2-4^2
=
扇形OABの高さPC=
扇形PAB=(1/2)AB・PC-三日月形AB
=(1/2)・2・√ -
=√ -
= c㎡
仕切りなおしやの。

1017:イナ
18/10/29 13:27:59.94 Es1mqcC9.net
>>994仕切りなおし。
扇形OAB=3.14c㎡
AB^2=(2√2-2)^2+2^2
=8-8√2+4+4
=16-8√2
AB=√(16-8√2)
=2√(4-2√2)
△OAB=(1/2)・2√(4-2√2)・√{(2√2)^2-(4-2√2)}
=√(4-2√2)・√(4+2√2)
=√(16-8)
=2√2
三日月形AB=3.14-2√2
ABを延長、半直線AB上にPから垂線PCを下ろす。
ABの中点をNとすると、
ON=2△OAB/AB
=2・2√2/2√(4-2√2)
=√(4+2√2)
PC=ON+PH
=√(4+2√2)+PH
扇形PABの高さPC=ON+PH
扇形PAB=(1/2)AB・PC-三日月形AB
=√(4-2√2)・{√(4+2√2)+PH}
=√8+PH√(4-2√2)
=√8+√(8-OH^2)(4-2√2)
= c㎡
Pの高さが4つか2つ。

1018:132人目の素数さん
18/10/29 21:02:54.90 t6V71XZu.net
>>973
P(A)をP(B)で割ることによって
P君が先の回数とQ君が先の回数が導ける
P(A)/P(B)=(P君が先の回数)/(Q君が先の回数)
          {n(n+2)-k-1}/{n^2(n+1)-kn}
P(A)/P(B)=――――――――――
          {n(n+2)-k}/{n(n+1)^2-k(n+1)}

       =(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk}
          
        ∵[n≧2,n(n+1)-1>k≧1]
∵の範囲でnとkの数値をいろいろと変えることにより
様々な勝率が導ける
計算知能にそのまま入力するだけで約分を
自動計算してくれるので試してごろうじろう
■Wolfram入力例
(n+1)(n^2+2n-1-k)/{n^2(n+2)-nk},k=2,n=�


1019:R



1020:132人目の素数さん
18/10/29 23:09:22.39 t6V71XZu.net
>>907
P(A)をP(B)で割ることによって
P君が先の回数とQ君が先の回数が導けるが
P(A)/P(B)=(P君が先の回数)/(Q君が先の回数)
P(A)/P(B)={(n+1)^2-2}/{n^2(n+1)}/{{(n+1)^2-1}/{n(n+1)^2}}
       =(n+1)(n^2+2n-1)/{n^2(n+2)} ∵[n≧1]
宝の個数kを設定しないと精度が低い


1021:132人目の素数さん
18/10/30 00:00:29.56 1kUFo2x+.net
>>997
この場合、宝の個数は1で固定で全マス探査となる
動かせる数値はnだけ

1022:132人目の素数さん
18/10/30 00:25:24.62 Cvs2wi6V.net
k動かして正解と同じになるか調べた。
Prelude Data.Ratio> let f n k = (n+1)*(n^2 + 2*n -1-k)%(n^2*(n+2)-n*k)
Prelude Data.Ratio> let g x = let n = (fromInteger x) in (+(0%1)) $ if (odd x) then (1/24*(6*n^3 + 20*n^2 - n - 27)*(n - 1))/(1/24*(6*n^2 + 10*n - 3)*(n + 1)*(n - 1)) else (1/4*n^4 + 7/12*n^3 - 7/8*n^2 - 13/12*n + 1)/(1/24*(6*n^2 - 2*n - 5)*(n + 2)*n)
Prelude Data.Ratio> let h n = head [f n k| k<-[1..], f n k <= g n]
Prelude Data.Ratio> mapM_ print [(g n, h n) | n<-[3..10]]
(26 % 27,8 % 9)
(84 % 83,1 % 1)
(203 % 197,36 % 35)
(413 % 398,28 % 27)
(751 % 722,80 % 77)
(1259 % 1210,27 % 26)
(993 % 955,28 % 27)
(2986 % 2875,88 % 85)
n:3~10で一致するkは一つもみつからん。
時間と労力の無駄。

1023:132人目の素数さん
18/10/30 00:44:40.93 Cvs2wi6V.net
しらかばぁあおぞぉら、みぃなぁみいかぁぜ~

1024:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 92日 23時間 43分 29秒

1025:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch