18/10/15 23:27:34.88 TBaDGY4B.net
>>767
Aが正則でないとき…
Eをn次の単位行列、yは実数とする。
|A+yE| はyのn次式だから、|A+yE| = 0 を満たすyの個数は高々n個である。
|A+yE|≠0 となるyに対しては
|xE - (A+yE)B| = |xE - B(A+yE)|,
が成り立つ。|A+yE| = 0 の解をうまく避けながら y→0 とすれば、
|xE-AB| = lim_{y→0} |xE - (A+yE)B| = lim_{y→0} |xE - B(A+yE)| = |xE-BA|,
∴ |xE-AB| = |xE-BA|.
A,B∈M_n(C)に対して ABとBAの固有多項式が同じになることを証明せよ。
URLリンク(detail.chiebukuro.yahoo.co.jp)
任意のn次正方行列A,Bについて ABとBAの固有多項式が同じになることの証明
URLリンク(detail.chiebukuro.yahoo.co.jp)