面白い問題おしえて~な 27問目at MATH
面白い問題おしえて~な 27問目 - 暇つぶし2ch705:132人目の素数さん
18/09/29 09:22:16.58 x/pASdT/.net
>>687
現時点で答えないの?
じゃぁそれ書いといてよ。

706:132人目の素数さん
18/09/29 09:48:36.15 +ZGkjoNR.net
>>685は、未解決問題を出題したのか?

707:132人目の素数さん
18/09/29 10:27:52.08 ZjAaeEtu.net
普通に考えたら有限個しかしないだろう
nが大きくなれば小さい素因数を大量に持たないといけなくなるがそんなのは非現実的

708:132人目の素数さん
18/09/29 12:57:43.60 +Hfhy7Kj.net
答え持ってない問題を書いていいかどうかは別にしても、現時点で答えがないなら最低でも>>514のように文面から答え持ってない事がわかるようにせんと駄目だよ。

709:132人目の素数さん
18/09/29 15:39:26.89 GXtaiBeF.net
>>674,679,680,683
見た目より簡単だよ。生成関数の標準的な演習問題くらい?
想定解答は以下のようなもの:
合同は同一視するので三角形の成立条件を考慮すれば、
辺の長さが自然数の三角形と 0<a≦b≦c<a+b をみたす非負整数の組(a,b,c)は一対一に対応することがわかる。
a=s+1, b=a+t, c=b+u とおき、 c<a+b ⇔ c-b<a ⇔ u≦s より s=u+v とおくことにより、
関係式 a=u+v+1, b=u+v+t+1, c=2u+v+t+1 で
0<a≦b≦c<a+b をみたす非負整数の組(a,b,c)と任意の非負整数の組(u,v,t)は一対一に対応することがわかる。
したがって、
f(x) = Σ[n-0,∞] a[n] x^n = Σ[0<a≦b≦c<a+b] x^(a+b+c)
= Σ[u,v,t≧0] x^(4u+3v+2t+3) = (x^3)/(1-x^4)(1-x^3)(1-x^2)。

710:132人目の素数さん
18/09/29 15:50:07.13 c/zrVhx6.net
いや、そのu,v,tが思いつかんかった。
これ
0<a≦b≦c<a+b
からうまくu.v.tを見つけてくるのがミソだと思うけどこれなんか一般論で見つけてくる方法があります?慣れの問題?

711:132人目の素数さん
18/09/29 16:37:21.66 GXtaiBeF.net
>>693
一般論というか基本的技法ですね。
・条件のない非負整数の組と対応させることが目標。
・p<q は p+1≦q とする。
・p≦q をみたす整数の組(p,q)は q=p+k とおくことで k≧0 をみたす整数の組(p,k)と一対一に対応することを使う。
>>692では
0<a から a=s+1 とおき(これで a は 非負整数 s で一対一に表せる)
a≦b≦c から b=a+t, c=b+u とおき(ここまでで 0<a≦b≦c をみたす a,b,c が非負整数 s,t,u で一対一に表せる)
そうすることで c<a+b ⇔ u≦s となるので s=u+v とおく(これで条件をみたす a,b,c が非負整数 v,t,u で一対一に表せた)
となります。

712:132人目の素数さん
18/09/29 16:42:36.38 5t2MTazF.net
>>680 と >>692 の関係
(p, q, r) = (t, v+1, u)

713:132人目の素数さん
18/09/29 16:44:28.46 GXtaiBeF.net
>>694
もちろんすべての場合でうまくいくというものではありません。
この場合は運よくうまくいってきれいな形になりましたが。

714:132人目の素数さん
18/09/29 16:52:45.98 GXtaiBeF.net
>>695,680
> a[n] は自然数n を n=2p+3q+4r (p≧0, q≧1, r≧0) と分割するやり方である。
は生成関数の形から分かることで、
三角形とその分割が有用な関係を持つとは思えません。
あったら面白いですが。

715:132人目の素数さん
18/09/29 17:33:54.89 RHyq/92m.net
>>696,697
なるほど。
本文の場合は
0<a≦b≦c<a+b
⇔0 ≦ (a-1)≦ (b-1) ≦ (c-1) ≦ (a-1)+(b-1)
でa-1,b-1,c-1について整理するとキレイに定数項消えちゃうんだ。
気づかなかったorz。

716:132人目の素数さん
18/09/29 17:57:25.67 5t2MTazF.net
>>681
稜の長さが { p^(3r), p^(2n+r), p^(2n-r)[p^(2n)-p^(2r)] } である直方体 (r=0,1,…,n-1)
表面積 2p^(6n),
体積 p^(4n+3r)[p^(2n)-p^(2r)],
p>1.

717:132人目の素数さん
18/09/29 18:16:47.45 5t2MTazF.net
>>682 の拡張
稜の長さが { p^r, p^r, [p^(2n-r)-p^r]/2 } である正方形柱 (r=0,1,…,n-1)
表面積 2p^(2n),
体積 (p^r)[p^(2n)-p^(2r)]/2,
p>1.

718:132人目の素数さん
18/09/29 18:43:59.68 +ZGkjoNR.net
どうやって思いつくん?

719:132人目の素数さん
18/09/29 20:12:28.11 sReFGpyG.net
■■■■■■■■■■■■■
□□□□□□□□□□□□■
■■■■■■■■■■■□■
■□□□□□□□□□■□■
■□■■■■■■■□■□■
■□■□□□□□■□■□■
■□■□■■■□■□■□■
■□■□■□□□■□■□■
■□■□■■■■■□■□■
■□■□□□□□□□■□■
■□■■■■■■■■■□■
■□□□□□□□□□□□■
■■■■■■■■■■■■■

720:132人目の素数さん
18/09/29 20:15:52.31 uT1RU4nf.net
呪怨キタ

721:132人目の素数さん
18/09/30 01:15:04.79 60e7kxgM.net
>>682 >>700
稜の長さを { A, A, (S/2A - A)/2 } とおく。
(S/2A - A)/2 が自然数となるAを n個以上とれるように Sを決める。
稜 … 多面体の辺

722:132人目の素数さん
18/09/30 04:11:30.00 I1AIdvLV.net
{(x,y,z)|x+y+z=n、x,y,z は非負整数、n は1以上の整数}
を満たす格子点の集合をAとする。
Aから異なる三点を選んだとき、それが正三角形を成している確率を n で表せ。
答えは、プログラムを組めば予想可能なものになるので、答えのみの解答は認めないものとする。

723:132人目の素数さん
18/09/30 04:56:56.32 p1KBHVZY.net
Oを中心とする半径1の円周上に、n個の点P[1],P[2],...,P[n]を、以下の2条件をともに満たすように配置する。なお各点はこの順に反時計回りに配置されるものとする。
(ア)各線分P[i]P[i+1]の長さは全て等しい。すなわちP[0]P[1]=P[1]P[2]=...=P[n-1]P[n]である。
(イ)0°<∠P[1]OP[n]≦180°
n以下の各自然数iに対し、△OP[i-1]P[i]の重心をG[i-1]とおく。
このとき、以下の(A)が成り立つように辺P[0]P[1]の長さを定めることができるか。
(A)相異なる整数jとkをうまく選べば、2点P[j]とP[k]を通る直線で、その上にG[0],G[1],...,G[n-1]の少なくとも1つが乗るようにできる。

724:132人目の素数さん
18/09/30 05:31:43.70 p1KBHVZY.net
すいません先程の問題文がおかしかったので訂正します。
Oを中心とする半径1の円周上に、n個の点P[1],P[2],...,P[n]を、以下の2条件をともに満たすように配置する。なお各点はこの順に反時計回りに配置されるものとする。
(ア)各線分P[i]P[i+1]の長さは全て等しい。すなわちP[1]P[2]=P[2]P[3]=...=P[n-1]P[n]である。
(イ)0°<∠P[1]OP[n]≦180°
n-1以下の各自然数iに対し、△OP[i]P[i+1]の重心をG[i]とおく。
このとき、以下の(A)が成り立つように辺P[1]P[2]の長さを定めることができるか。
(A)相異なる整数jとkをうまく選んで2点P[j]とP[k]を通る直線を引けば、その上にG[1],G[2],...,G[n-1]の少なくとも1つが乗る。

725:132人目の素数さん
18/09/30 05:39:36.69 l/U+OsJc.net
>>705
求める確率をp[n]とすると
p[n]=2/(n^2+3n-2)
になると予想した
A[n]={(x,y,z)|x+y+z=n, x,y,zは非負整数}
できる正三角形の個数をT[n]とすると、
最初の方は
T[1]=1, T[2]=5, T[3]=15, T[4]=35, T[5]=70
となった
A[n]と△型・▽型の正三角形の個数は規則的に数えられるけど
傾いてる正三角形が一般の場合にうまくいかないorz

726:132人目の素数さん
18/09/30 07:08:48.15 60e7kxgM.net
>>708
 辺長L(≧2)の△型には、傾いた正三角形(L-1)個が内接する。(▽も含む)
>>705
A[1] = 3,
A[n] = A[n-1] + (n+1),
より
A[n] = (n+2)(n+1)/2,   … 三角数
A[n]個の点から3点を選ぶ方法は
C[A[n], 3] = A[n] (A[n]-1) (A[n]-2)/6
 = {(n+2)(n+1)/2} {(n+3)n/2} {(nn+3n-2)/2},
 辺長nの大きい△型の中に
 辺長Lの△型が C[n+2-L, 2] 個ある。
 傾いている正三角形も含めれば、そのL倍になる。
T[n] = Σ(L=1, n) C[n+2-L, 2]・L
 = C[n+3, 4]
 = (n+3)(n+2)(n+1)n/24
 = A[n](A[n]-1)/6,
よって
T[n]/C[A[n], 3] = 1/(A[n]-2) = 2/(nn+3n-2),


727:132人目の素数さん
18/09/30 08:26:01.48 I1AIdvLV.net
ご名答
>> 辺長L(≧2)の△型には、傾いた正三角形(L-1)個が内接する。(▽も含む)
ここがポイントですね。傾かないものも含めると、
「サイズLの正置な正三角形には、調度L個の正三角形が属す」
と言えます。全ての正三角形は、いずれかの正置な正三角形に属すため、
あとは、正置な正三角形がいくつあるかを調べ、足し合わせるだけです。

728:132人目の素数さん
18/09/30 09:33:26.40 p1KBHVZY.net
707おねがいします

729:132人目の素数さん
18/09/30 10:15:57.85 l/U+OsJc.net
>>709,710
なるほど、そうやって考えるんですね
C[n+2-L, 2]の部分ですが、これは
辺長Lの正置な正三角形のいちばん上の辺長1の正三角形に注目して
Σ[k=1,n-(L-1)]k
と数えたものでしょうか?

730:132人目の素数さん
18/09/30 10:53:25.52 I1AIdvLV.net
サイズ n の正置な正三角形は 1 (=C[2,2])
サイズ n-1 の正置な正三角形は 3 (=1+2=C[3,2])
サイズ n-2 の正置な正三角形は 6 (=1+2+3=C[4,2])
サイズ n-3 の正置な正三角形は 10 (=1+2+3+4=C[5,2])
...
サイズ 1 の正置な正三角形は 1+2+3+...+n=C[n+1,2]
です。では、サイズ L では? というと、 C[n+2-L,2] という事です。
注目するサイズの正置正三角形のトップの頂点の、可動範囲を数え上げるという考えでもokですね。

731:132人目の素数さん
18/09/30 12:10:03.51 +ZX6Gzee.net
>>682
用意していた答え
3辺の長さを (a,b,c) = (1, 2^r-1, 2^{2n-r}-1)、r=1,2,…n とおくと、
表面積 S = 2(ab+bc+ca) = 2(2^{2n}-1).

732:132人目の素数さん
18/09/30 17:00:25.87 QXkD3Yad.net
■■■■■■■■■■■■■
□□□□□□□□□□□□■
■■■■■■■■■■■□■
■□□□□□□□□□■□■
■□■■■■■■■□■□■
■□■□□□□□■□■□■
■□■□■■■□■□■□■
■□■□■□□□■□■□■
■□■□■■■■■□■□■
■□■□□□□□□□■□■
■□■■■■■■■■■□■
■□□□□□□□□□□□■
■■■■■■■■■■■■■

733:132人目の素数さん
18/10/01 00:17:31.81 NFGqB/Wz.net
>>580
山札からダイヤが12枚出たところまですべて1/4で
13枚目のみゼロにすることも可能
■箱の中のカードがダイヤである確率は
基本形の式
q=1-{{165n-3n^2+351}/(208n-7n^2+468)}に
係数αをnの各項に掛ける
q=1-{{165nα-3αn^2+351}/(208nα-7αn^2+468)}
351と468にはそれぞれβ=479001600を掛ける
∵q=1-{{165nα-3αn^2+351β}/(208nα-7αn^2+468β)}
α=(n^2-13n)^6+182(n^2-13n)^5+13468(n^2-13n)^4
   +516360(n^2-13n)^3+10752768(n^2-13n)^2+114341760(n^2-13n)
   +479001600
これで出来上がり


734:132人目の素数さん
18/10/01 01:58:40.96 e3gl78jP.net
どうして確率や場合の数の問題しか出てこないのかね。
そんなに面白いかい?

735:132人目の素数さん
18/10/01 11:23:19.73 zs2OgFnD.net
AとBが引き分けのないゲームを次々と行い、一回のゲームで勝つ確率はそれぞれa, bである。つまりa+b=1である。
Aが先にn勝に到達する確率を求めよ。

736:132人目の素数さん
18/10/01 11:30:00.57 0Ok3sr+H.net
>>718
これ求まるん?
1/2の時でもバナッハのマッチ箱で超難題なのに。
1/2じゃなくて求まるん?

737:132人目の素数さん
18/10/01 11:33:21.47 lz/dpGRk.net
>>719
続けたまえ

738:132人目の素数さん
18/10/01 11:44:18.11 MPNlhgUM.net
先にn勝というのは、2n-1回やってn勝以上することと同じ
Σ[k=n~2n-1] a^k・b^(2n-1-k)・C(k,2n-1)

739:132人目の素数さん
18/10/01 13:22:40.67 WGyB9cPW.net
何も難問じゃない
将棋の番勝負の勝率レーティングから推計したことあるやつなら簡単にわかるはず

740:132人目の素数さん
18/10/01 13:40:31.38 DmLU+xOs.net
あ、失礼。単にAが勝つ確率か。回数の期待値と勝手に思った。勝つ確率だけなら出るかな?

741:132人目の素数さん
18/10/01 13:43:03.18 DmLU+xOs.net
つまりは>>721か。
これ求まるんかな?

742:132人目の素数さん
18/10/01 13:51:24.17 lSP8i6OA.net
707おねがいします

743:132人目の素数さん
18/10/01 13:57:37.32 dDtimu84.net
>>721,724
p(n)=Σ[k=n,2n-1]a^k・b^(2n-1-k)・C(k,2n-1)
とおくと、n≧2のとき二項定理より
(a+b)^(2n-1)=2(p(n)-a^n・b^(n-1))+a^n・b^(n-1)
よって
p(n)=(1+a^n・b^(n-1))/2

744:132人目の素数さん
18/10/01 14:02:16.70 dDtimu84.net
>>726
二項係数抜けてるしそもそも3行目ダメですね
撤回します

745:132人目の素数さん
18/10/01 15:59:39.87 qcAe9ESj.net
とりあえず10項ほど計算させてみたけど
makelist(factor(expand(sum(binomial(2*n-1,k)*a^k*(1-a)^(2*n-1-k),k,n,2*n-1))),n,1,10);
[
a,
-a^2*(2*a-3),
a^3*(6*a^2-15*a+10),
-a^4*(20*a^3-70*a^2+84*a-35),
a^5*(70*a^4-315*a^3+540*a^2-420*a+126),
-a^6*(252*a^5-1386*a^4+3080*a^3-3465*a^2+1980*a-462),
a^7*(924*a^6-6006*a^5+16380*a^4-24024*a^3+20020*a^2-9009*a+1716),
-a^8*(3432*a^7-25740*a^6+83160*a^5-150150*a^4+163800*a^3-108108*a^2+40040*a-6435),
a^9*(12870*a^8-109395*a^7+408408*a^6-875160*a^5+1178100*a^4-1021020*a^3+556920*a^2-175032*a+24310),
-a^10*(48620*a^9-461890*a^8+1956240*a^7-4849845*a^6+7759752*a^5-8314020*a^4+5969040*a^3-2771340*a^2+755820*a-92378)
]
なんにも思いつかんorz。

746:132人目の素数さん
18/10/01 16:20:15.25 gVHzs4Q+.net
あかん、いろいろ調べたけどどうしようもなさそう。
>>721で正解なんかな?

747:132人目の素数さん
18/10/01 18:00:13.71 lSP8i6OA.net
pを有理数とする。3辺の長さがp,p,1の二等辺三角形をT(p)と書く。
ある自然数kが存在して、k個のT(p)のみに分割できる多角形全体からなる集合をS(k)とする。
k=1,2,3,...に対し、以下の条件を満たすS(k)の要素の多角形の形状をすべて決定せよ。
条件『多角形の任意の2頂点間の距離は有理数である。』

748:
18/10/01 21:00:19.22 yiYUO1B1.net
>>718
Aが先にn勝する確率をPnとすると、
P1=a
P2=a^2+2a^2・b
P3=a^3+3a^3・b+6a^3・b^2
P4=a^4+4a^4・b+(5C2)a^4b^2+(6C3)a^4・b^3
=a^4+4a^4・b+10a^4b^2+20a^4・b^3
P5=a^5+5a^5・b+(6C2)a^5・b^2+(6C3)a^5・b^3+(6C4)a^5・b^4
=a^5+5a^5・b+15a^5・b^2+20a^5・b^3+15a^5・b^4
P6=a^6+6a^6・b+(7C2)a^6・b^2+(7C3)a^6・b^3+(7C4)a^6・b^4+(7C5)a^6・b^5
=a^6+6a^6・b+21a^6・b^2+35a^6・b^3+35a^6・b^4+21a^6・b^5
P7=……
>>624フィボナッチだな。一般項出るぞ。

749:132人目の素数さん
18/10/01 22:20:08.16 NFGqB/Wz.net
■□■■■□■■■□■■■□■■■
■□■□■□■□■□■□■□■□■
■■■□■■■□■■■□■■■□■

750:
18/10/01 23:00:40.25 yiYUO1B1.net
P1=a
P2/a^2=1+2b
P3/a^3=1+3b+6b^2
P4/a^4=1+4b+(5・4/2・1)b^2+(6・5・4/3・2・1)b^3
P5/a^5=1+5b+(6・5/2・1)b^2+(6・5・4/3・2・1)b^3+(6・5/2・1)b^4
P6/a^6=1+6b+21b^2+35b^3+35b^4+21b^5
P7/a^7=1+7b+28b^2+56b^3+70b^4+56b^5+28b^6
P8/a^8=1+8b+36b^2+84b^3+126b^4+126b^5+84b^6+36b^7
P9/a^9=1+9b+45b^2+120b^3+210b^4+252b^5+210b^6+120b^7+45b^8
P10/a^10=1+10b+55b^2+165b^3+330b^4+462b^5+462b^6+330b^7+165b^8+55b^9
>>731漸化式ができそう。
nが奇数のとき、
Pn/a^n=
nが偶数のとき、
Pn/a^n=

751:132人目の素数さん
18/10/02 02:29:23.68 VNedEoPb.net
>>721
p(n) = Σ[k=n, 2n-1] a^k b^(2n-1-k) C(2n-1, k),   (b=1-a)
p(n+1) = p(n) + C[2n-1, n] (a-b)(ab)^n,   (b=1-a)


752:132人目の素数さん
18/10/02 04:59:51.66 VNedEoPb.net
∂p(n)/∂a = (n/2) C(2n, n) {a(1-a)}^(n-1),
p(n) = (n/2) C(2n, n) Σ[k=0, n-1] (-1)^k C(n-1, k)/(n+k) a^(n+k)
   = (n/2) C(2n, n) a^n Σ[k=0, n-1] C(n-1, k)/(n+k) (-a)^k,
   


753:イナ
18/10/02 05:33:31.15 K+aBpi/A.net
>>733訂正。
P10/a^10=1+10b+(11C2)b^2+(12C3)b^3+(13C4)b^4+(14C5)b^5+(15C6)b^6+(16C7)b^7+(17C8)b^8+(18C9)b^9
=1+10b+55b^2+220b^3+715b^4+2002b^5+5005b^6+11440b^7+24310b^8+48620b^9
P9/a^9=1+9b+(10C2)b^2+(11C3)b^3+(12C4)b^4+(13C5)b^5+(14C6)b^6+(15C7)b^7+(16C8)b^8
=1+9b+45b^2+165b^3+495b^4+1287b^5+(14C6)b^6+(15C7)b^7+(16C8)b^8
P8/a^8=1+8b+36b^2+120b^3+(11C4)b^4+(12C5)b^5+(13C6)b^6+(14C7)b^7
P7/a^7=1+7b+(8C2)b^2+(9C3)b^3+(10C4)b^4+(11C5)b^5+(12C6)b^6
=1+7b+28b^2+84b^3+(10C4)b^4+(11C5)b^5+(12C6)b^6
P6/a^6=1+6b+(7C2)b^2+(8C3)b^3+(9C4)b^4+(10C5)b^5
P5/a^5=1+5b+(6C2)b^2+(7C3)b^3+(8C4)b^4
=1+5b+15b^2+35b^3+56b^4

754:132人目の素数さん
18/10/02 07:32:49.03 +LHY32Zh.net
>>718
Rを使うと 負の二項分布を使ってpnbinom(n-1,n,a)で数値計算はできる。

755:イナ
18/10/02 10:50:51.36 K+aBpi/A.net
>>718
>>736一般項が出た。
Pn=a^n/(n-1)!Σ[k=1~n-2]{(n+k)!b^(k+1)}/(k+1)!

756:132人目の素数さん
18/10/02 12:38:55.19 eO27KDaY.net
>>735
おお、すごい。
流石にこれ以上は無理?

757:132人目の素数さん
18/10/02 13:11:05.17 0RVIqaz8.net
>>735
makelist((expand(sum(binomial(2*n-1,k)*a^k*(1-a)^(2*n-1-k),k,n,2*n-1))),n,0,10);
makelist((expand(n/2*a^n*binomial(2*n,n)*sum(binomial(n-1,k)/(n+k)*(-a)^(k),k,0,n-1))),n,0,10);
(%o1) [0,a,3*a^2-2*a^3,6*a^5-15*a^4+10*a^3,-20*a^7+70*a^6-84*a^5+35*a^4,70*a^9-315*a^8+540*a^7-420*a^6+126*a^5,-252*a^11+1386*a^10-3080
*a^9+3465*a^8-1980*a^7+462*a^6,924*a^13-6006*a^12+16380*a^11-24024*a^10+20020*a^9-9009*a^8+1716*a^7,-3432*a^15+25740*a^14-83160*a^13+
150150*a^12-163800*a^11+108108*a^10-40040*a^9+6435*a^8,12870*a^17-109395*a^16+408408*a^15-875160*a^14+1178100*a^13-1021020*a^12+556920*
a^11-175032*a^10+24310*a^9,-48620*a^19+461890*a^18-1956240*a^17+4849845*a^16-7759752*a^15+8314020*a^14-5969040*a^13+2771340*a^12-
755820*a^11+92378*a^10]
(%o2) [0,a,3*a^2-2*a^3,6*a^5-15*a^4+10*a^3,-20*a^7+70*a^6-84*a^5+35*a^4,70*a^9-315*a^8+540*a^7-420*a^6+126*a^5,-252*a^11+1386*a^10-3080
*a^9+3465*a^8-1980*a^7+462*a^6,924*a^13-6006*a^12+16380*a^11-24024*a^10+20020*a^9-9009*a^8+1716*a^7,-3432*a^15+25740*a^14-83160*a^13+
150150*a^12-163800*a^11+108108*a^10-40040*a^9+6435*a^8,12870*a^17-109395*a^16+408408*a^15-875160*a^14+1178100*a^13-1021020*a^12+556920*
a^11-175032*a^10+24310*a^9,-48620*a^19+461890*a^18-1956240*a^17+4849845*a^16-7759752*a^15+8314020*a^14-5969040*a^13+2771340*a^12-
755820*a^11+92378*a^10]
素晴らしい。

758:132人目の素数さん
18/10/02 17:12:04.16 xOs+qnbe.net
n=0,αn/βn,α={2^n+2^(n-1)},β={2^(n+2)+2^(n-1)}
分母と分子の両方にゼロ掛けているのに
なんで1/3が出力されるねん?(´・ω・`)

759:132人目の素数さん
18/10/02 18:09:37.32 aHJ20R9e.net
(1)実級数Σ_{n=1}^∞ a_nが絶対収束するならば
Σ_{n=1}^∞ (a_n)^2は収束するか?
(2)実級数Σ_{n=1}^∞ a_nが条件収束するならば
Σ_{n=1}^∞ (a_n)^2は収束するか?

760:132人目の素数さん
18/10/02 18:18:08.02 zN6Tq8dX.net
(1) a_n > 1 である n は有限個なのでそれらを除いて (a_n)^2 ≦ a_n。よって収束する。
(2) しない。反例:a_n = (-1)^n/√n。

761:132人目の素数さん
18/10/02 18:19:03.50 aHJ20R9e.net
>>743
早すぎワロタ
正解

762:学術
18/10/02 19:49:00.32 qfVJ5oyJ.net
間違ってるものを採点して生徒が伸びた方がいたと思う。
高速通信添削で赤入れるみたいにしちゃうといい。女子美味しいな。

763:学術
18/10/02 19:49:43.60 qfVJ5oyJ.net
フルハウスの意味表象記号観。

764:イナ
18/10/02 23:29:03.26 K+aBpi/A.net
>>738
Pn(n-1)!/a^n=(n+1)n(1-a)^2/2・1+(n+2)(n+1)n(1-a)^3/3・2・1+……+(2n-2)(2n-3)……n(1-a)^(n-1)/(n-1)!
Pn={a^n/(n-1)!}{(n+1)n(1-a)^2/2・1+(n+2)(n+1)n(1-a)^3/3・2・1+……+(2n-2)(2n-3)


765:……n(1-a)^(n-1)/(n-1)!} 通分するのかな。



766:132人目の素数さん
18/10/03 01:24:31.41 7h2ip4rW.net
>>743 (2)
S = Σ_{n=1}^{∞} a_n = Σ_{n=1}^{∞} (-1)^n /√n が収束すること。
S = -1 + 1/√2 - Σ_{m=2}^{∞} ( 1/√(2m-1) - 1/√(2m) )
 > -1 + 1/√2 - (1/2)Σ_{m=2}^{∞} ( 1/√(2m -3/2) - 1/√(2m +1/2) )  … (*)
 = -1 + 1/√2 - 1/√10
 = -0.60912098483…
S = -1 + Σ_{m=1}^{∞} ( 1/√(2m) - 1/√(2m+1) )
 < -1 + (1/2)Σ_{m=1}^{∞} ( 1/√(2m -1/2) - 1/√(2m +3/2) )    … (*)
 = -1 + 1/√2 - 1/√3 + 1/√14
 = -0.60298224609…
S = -0.60489864342163…


767:132人目の素数さん
18/10/03 02:07:38.39 7h2ip4rW.net
>>748 (補足)
 f(n) = 1/√n の平均変化率 {1/√(n-h) - 1/√(n+h)}/(2h) が h>0 と共に増加すること。
 {f(n-h) - f(n+h)}/2h = {1/√(n-h) - 1/√(n+h)}/(2h)
 = {√(n+h) - √(n-h)}/{2h √(nn-hh)}
 = 1 / {√(nn-hh)・(√(n-h) + √(n+h)}
 = 1 / {√(nn-hh)・√[2n+2√(nn-hh)]},
あるいは平均値の定理により
 f(n-L-h) - f(n+k+h) - {f(n-h) - f(n+h)} - {f(n-L+k-h) - f(n-L+k+h)} + {f(n+k-L) - f(n-L+h)}
 = {f(n-L-h) -f(n-h) -f(n-L+k-h) +f(n+k-h)} - {f(n-L+h) -f(n+h) -f(n-L+k+h) +f(n+k+h)}
 = -2h {f '(a-L) - f '(a) - f '(a-L+k) + f'(a+k)}    (n-h<a<n+h)
 = -2h {f '(a-L) - f '(a)} -2h {f '(a-L+k) - f '(a+k)}
 = 2hk {f "(b-L) - f "(b)}   (a<b<a+k)
 = -2hkL f '''(c)       (b-L<c<b)
 > 0


768:132人目の素数さん
18/10/03 05:10:42.84 DaTYnnLD.net
[0,π]上の連続関数fに対して、
lim(n→∞)∫_0^π f(x)cos(nx) dx=0
となることを証明せよ

769:132人目の素数さん
18/10/03 13:43:17.24 rOBG/Z0C.net
>>751
(p,q) := 2/π∫ pq dx とする。
これは双線形であり、{cos nx} は (cos lx, cos mx) = δ(l,m) となる。
Nを自然数とし
a[n] = (cos nx, f)、g = Σ[m:1~N] a[m] cos mx、h = f-g とおく。
n: 1~N に対し
(h, cos nx) = (f-g, cos nx) = (f, cos nx) - (Σ[m:1~N] a[m] cos mx, cos nx) = a[n] - a[n] = 0
であるから (h,g) = 0 である。
よって
(f, f) = (g+h, g+h) = (g, g) + 2(g, h) + (h, h) = (g, g) + (h, h) ≧ (g, g) = (Σ[l:1~N] a[l] cos lx, Σ[m:1~N] a[m] cos mx) = Σ[m:1~N] a[m]^2
である。
これが任意のNで成立するから
Σ[m:1~∞] a[m]^2
は収束するので lim(n→∞)a[n]=0 である。

770:132人目の素数さん
18/10/03 15:09:19.50 sCRZrnTp.net
>>751
正解!
ベッセルの不等式証明してくれた感じかな

771:132人目の素数さん
18/10/03 15:16:20.13 AdKJHB0+.net
【世界教師マⅰトレーヤ】 トランプは現在、ツイートを囮にして、史上最悪の法案にサインする気でいる
スレリンク(liveplus板)
山本太郎もブチ切れる、労働者へのゲスい裏切り!

772:132人目の素数さん
18/10/04 00:09:55.61 wFWA09/F.net
>>734
 p(n+1) - p(n) = (2a-1) C[2n-1, n] (a(1-a))^n,     (n≧1)
の両辺に t^n を掛けて和をとると
 G(t)/t - p(1) - G(t) = (2a-1)Σ[n=1,∞] C[2n-1, n] (a(1-a)t)^n
 = (1/2)(2a-1) {1/√(1-4a(1-a)t) -1},     … (*)
 
 (2(1-t)/t) G(t) = 1 + (2a-1)/√(1-4a(1-a)t),
 G(t) = Σ[n=1,∞] p(n) t^n = (t/2(1-t)) {1 + (2a-1)/√(1-4a(1-a)t)},
*) 一般化された二項定理
 1/√(1-4x) = 1 + 2Σ[n=1,∞] C[2n-1, n] x^n,


773:132人目の素数さん
18/10/04 02:29:02.41 gUoKrYzL.net
>>718 の答えは今出てる答えで正解でいいのかな?
流石にもうこれ以上はどうしょうもない気がする。

774:132人目の素数さん
18/10/04 02:43:03.87 pCjQRYKm.net
母函数面白いね
カタラン数のそれに近い感じもある

775:イナ
18/10/04 10:21:42.56 jwM/NwpW.net
>>755
>>718の答え、>>747でいいの?
確率をnとaで表せってことだよね?
……があるままでいいってこと?
通分して分子が簡単になったりして。
>>747

776:イナ
18/10/04 11:08:57.18 jwM/NwpW.net
>>757
通分すると、
Pn={a^n/(n-1)!(n-1)!}[(n+1)!{(n-1)(n-2)……3}(1-a)^2+(n+2)!{(n-1)(n-2)……4)}(1-a)^3+……+(2n-2)!(1-a)^(n-1)]
簡単にならないなら……を許可するしかないか。それかΣとkを使うか。

777:132人目の素数さん
18/10/04 22:51:50.84 wFWA09/F.net
>>756
Catalan(n) = C[2n, n] - C[2n, n-1] = {1/(n+1)} C[2n, n]
Σ[n=0,∞] Catalan(n) t^n = {1 - √(1-4t)}/(2t),

778:132人目の素数さん
18/10/04 23:00:52.73 LFy1EKo2.net
カタラン数を語らん!

779:132人目の素数さん
18/10/04 23:14:12.31 VmTW+2yt.net
このスレで見つけた問題。
[0,n]×[0,n]の格子点の隣接する格子点をむすんで得られるグラフを考える。(図1参照)
このグラフの左下と右上を結ぶグラフ上の経路で長さ2nのもののうちy≦xの部分にある横線をちょうどk回通るものの個数を求めよ。
>>432より
>―図1―(n=6の場合)
>┌─┬─┬─┬─┬─┬─┐
>│ │ │ │ │ │ │ 
>├─┼─┼─┼─┼─┼=┤
>│ │ │ │ │ │ │ 
>├─┼─┼─┼─┼=┼=┤
>│ │ │ │ │ │ │ 
>├─┼─┼─┼=┼=┼=┤
>│ │ │ │ │ │ │ 
>├─┼─┼=┼=┼=┼=┤
>│ │ │ │ │ │ │ 
>├─┼=┼=┼=┼=┼=┤
>│ │ │ │ │ │ │ 
>└=┴=┴=┴=┴=┴=┘

780:132人目の素数さん
18/10/08 18:08:41.43 vYJ1GP+F.net
■■■■■■■■■■■■■
□□□□□□□□□□□□■
■■■■■■■■■■■□■
■□□□□□□□□□■□■
■□■■■■■■■□■□■
■□■□□□□□■□■□■
■□■□■■■□■□■□■
■□■□■□□□■□■□■
■□■□■■■■■□■□■
■□■□□□□□□□■□■
■□■■■■■■■■■□■
■□□□□□□□□□□□■
■■■■■■■■■■■■■

781:132人目の素数さん
18/10/11 17:11:17.49 +nerrO/K.net
不思議な現象に遭遇したけど、よくわからないのでみんなの知恵を借りたい。
a1,a2,…を不定元とし、σをその添字を1だけ大きくする作用素とする。
次で有理式の列{F[n]; n=0,1,2,…}を定める:
F[0] = 1, F[n] = (F[n-1] + σF[n-1])/(a1+a2+…+an) (n≧1)。
F[1] = (1 + 1)/(a1) = 2/a1,
F[2] = (2/a1 + 2/a2)/(a1+a2) = 2/a1a2,
F[3] = (2/a1a2 + 2/a2a3)/(a1+a2+a3) = 2(a1+a3)/a1a2a3(a1+a2+a3),
F[4] = (2(a1+a3)/a1a2a3(a1+a2+a3) + 2(a2+a4)/a2a3a4(a2+a3+a4))/(a1+a2+a3+a4)
   = 2(a1a2+a2a3+a3a4)/a1a2a3a4(a1+a2+a3)(a2+a3+a4)
のようになるが、既約分数表示での分母を見ると偶数項の因数は約分で消え、奇数項の因数しか現れていない。
PCで調べるとF[8]まではそうなっている。
なので「F[n]を既約分数で表したとき分母には奇数項の因数しか現れない」と予想するが、
これは正しいだろうか?
また関連しそうなことがあったら教えてください。


782:132人目の素数さん
18/10/12 20:40:52.47 PScjLvUl.net
1/a(a+b)(a+b+c)…(a+b+c+…+z) を [a,b,c,…,z] と書くことにする。
[] = 1,[a] = 1/a, [a,b] = 1/a(a+b) など。
次を示せ。
(1) [a][b] = [a,b] + [b,a]
(2) [a,b][x] = [a,b,x] + [a,x,b] + [x,a,b]
(3) [a,b][x,y] = [a,b,x,y] + [a,x,b,y] + [a,x,y,b] + [x,a,b,y] + [x,a,y,b] + [x,y,a,b]
(4) [a][b][c] = [a,b,c] + [a,c,b] + [b,a,c] + [b,c,a] + [c,a,b] + [c,b,a]
また、一般にどのようなことがいえるだろうか?
>>763 を考えた背景にあるもの)

783:132人目の素数さん
18/10/14 10:12:53.96 Rg/i5zok.net
E, A, B を同じ型の正方行列とし、Eを単位行列とする。
E-ABが逆行列Cをもつとき、E-BAが正則であることを示し、その逆行列をE, A, B, Cを用いて表せ。

784:132人目の素数さん
18/10/14 11:38:51.05 8dVZheoh.net
>>765
C = (E-AB)^-1 = E + AB + (AB)^2 + … とおもえば
(E-BA)^-1 = E + BA + (BA)^2 + … = E + BA + B(AB)A + B (AB)^2 C + … = E + BCA と予想できて、
あとは計算で (E-BA)(E+BCA) = (E+BCA)(E-BA) = E。

785:132人目の素数さん
18/10/14 11:48:27.04 8dVZheoh.net
A,Bがn次行列のとき、ABとBAの固有値は等しいことを示せ。

786:132人目の素数さん
18/10/14 18:47:55.39 RPfJW+Db.net
係数環がZで証明できれば十分。
よってさらにCで証明できれば十分。
Aが正則のときABA^(-1)とBの固有多項式が等しく故成立。
一般の場合は等式 ch AB = ch BA がザリスキ開集合 det A≠0 で成立する故一般に成立。

787:132人目の素数さん
18/10/14 20:07:46.18 KkBlRZKF.net
■ニャンティホール問題
□□□  ∧,,∧    ∧,,∧   
□□□  (,,・∀・)   ミ,,・∀・ミ  
□□□~(_u,uノ @ミ_u,,uミ 


788:132人目の素数さん
18/10/15 11:53:39.52 Cs8TUMYb.net
>>763
それ無理じゃね?
全変数に1をいれるとF[n] = 2^n/n!なので十分大きいnでv_2(F[n]) < 0。
一方でa1 = 1、残りに2をいれると全てのnでF[n]は2進整数。
よって分母に必ず項の数が偶数の因子が出てくると思う。

789:132人目の素数さん
18/10/15 12:43:35.59 i7/FRo1V.net
>>770
> 全変数に1をいれるとF[n] = 2^n/n!なので十分大きいnでv_2(F[n]) < 0。
v_2は2進付値だよね。だったら、
v_2(n!) = Σ[k=1,∞] floor(n/2^k) ≦ Σ[k=1,∞] n/2^k ≦ n だから
v_2(F[n]) ≧ 0 だよ。

790:132人目の素数さん
18/10/15 14:26:48.59 ArZ1mDJT.net
>>771
あ、ホントだ。
失礼しました。

791:132人目の素数さん
18/10/15 17:00:40.06 I979f5xZ.net
平川-松村の定理

792:132人目の素数さん
18/10/15 18:23:54.97 Pc4lKaBY.net
p1, p2, Pは素数かつ、
p1 ≧ 3, p2 ≧ 3, P ≧ 7で、
p1 + p2 = ( P + 1 )
が成り立つときの
p1, p2, P がみたす性質って何かありますか?

793:132人目の素数さん
18/10/15 18:33:36.53 7e+ZqB9F.net
>>774
mod

794:132人目の素数さん
18/10/15 23:27:34.88 TBaDGY4B.net
>>767
Aが正則でないとき…
Eをn次の単位行列、yは実数とする。
|A+yE| はyのn次式だから、|A+yE| = 0 を満たすyの個数は高々n個である。
|A+yE|≠0 となるyに対しては
 |xE - (A+yE)B| = |xE - B(A+yE)|,
が成り立つ。|A+yE| = 0 の解をうまく避けながら y→0 とすれば、
 |xE-AB| = lim_{y→0} |xE - (A+yE)B| = lim_{y→0} |xE - B(A+yE)| = |xE-BA|,
∴ |xE-AB| = |xE-BA|.
A,B∈M_n(C)に対して ABとBAの固有多項式が同じになることを証明せよ。
URLリンク(detail.chiebukuro.yahoo.co.jp)
任意のn次正方行列A,Bについて ABとBAの固有多項式が同じになることの証明
URLリンク(detail.chiebukuro.yahoo.co.jp)

795:132人目の素数さん
18/10/15 23:28:12.32 vAwE2iKE.net
777☆

796:132人目の素数さん
18/10/16 10:47:22.37 9Iy8NhYm.net
nを自然数として、a_1=3,a_n=n(a_(n-1)-1)+2 (n≧2)でa_nを定める。
ここK村の人口はa_n人で、増えることも減ることもない。
さて、K村から任意の2人を選んだ時、その2人はある「関係」を持っているとする。そして、その「関係」はn種類にわたって存在する。
この時、どの2人を選んでも同じ「関係」で結ばれているような3人組が必ず存在することを示せ。
オリジナルです
考え方自体は既出だと思う

797:132人目の素数さん
18/10/16 11:06:57.32 XgKYsVQ3.net
イミフ

798:132人目の素数さん
18/10/16 15:17:31.18 pXbAMmW4.net
a[1]=3人だと1種類
a[2]=6人だと2種類
a[3]=17人だと3種類
・・・

799:132人目の素数さん
18/10/16 15:31:09.15 4hIfQunY.net
>>778
よく分からんけど、ラムゼー数( URLリンク(ja.wikipedia.org)
R_n(3,3,…,3) ≦ a[n] を示せってことか?

800:132人目の素数さん
18/10/16 15:51:55.66 xW+nW6TE.net
>>778
正確に言葉を使え
高卒か?

801:132人目の素数さん
18/10/16 16:25:15.98 59lKj0WN.net
>>778>>781の意味ならそのままwikiに書いてある漸化式で解けちゃうね。R(…)の中の2は自動的に落ちてしまう

802:132人目の素数さん
18/10/16 17:30:56.90 5jr9jBpY.net
清書
Claim 1)
R(k1,…,kn)≦R(k1-1,k2,…,kn) + R(k1,k2-1,…,kn) + … + R(k1-1,k2,…,kn-1) - n + 2
(∵) R(k1-1,k2,…,kn) + R(k1,k2-1,…,kn) + … + R(k1-1,k2,…,kn-1) - n + 2個の点からなる完全グラフから1点v を選び、そこから残りの点への辺を1~nに彩色する。
このとき、色1に塗られている辺の個数がR(k1-1,k2,…,kn)以上かまたは…�


803:Fnに塗られている辺の個数がR(k1-1,k2,…,kn-1)以上である。 最初の場合(残りの場合も同じように議論できる)、色1に塗られている辺の向かう先の点の個数がR (k -1, k2,…,kn)以上だから、それらの点からk1 -1個の点の、色1のみからなる完全グラフか、ki個の点の色iのみからなる完全グラフがある。 前者の場合、v とあわせればk1 個の点の色1のみからなる完全グラフが得られる。 Claim2) R(k1,…,kn,2) = R(k1,…,kn) (∵) R(k1,…,kn)個以上の頂点からなる完全グラフをn+1色に塗り分ける時、色n+1が使われていればその辺のみからなるグラフが2点完全グラフである。 n+1がつかわれていなければR(k1,…,kn)の定義からいずれかの色 i のみで塗られた完全 ki グラフを含む。 以上により R(3,3,…,3) ≦ a_n。



804:132人目の素数さん
18/10/17 12:18:06.75 73t+PGbH.net
>>782
これで理解できへんのはアウトやろ

805:132人目の素数さん
18/10/17 12:26:37.27 0tcTzRCF.net
この問題文はあかん

806:132人目の素数さん
18/10/17 15:01:02.00 I9IpbIiP.net
問題文かは鳩ノ巣かなと思ってた

807:132人目の素数さん
18/10/17 15:40:39.54 0tcTzRCF.net
わかスレの問題改題。
数列 (c[n], d[n]) を
 c[n] = (2n-1)c[n-1] + c[n-2]、c[1] = 0、c[2] = 1、
 d[n] = (2n-1)d[n-1] + d[n-2]、d[1] = 1、d[2] = 0
で定める時 lim[n→∞] c[n]/(2n-1)!!、lim[n→∞] d[n]/(2n-1)!! を求めよ。

808:132人目の素数さん
18/10/17 18:50:29.46 PUvZuus0.net
>>788
c[n]の方は組合せ的意味(スレリンク(math板:494番),510,623)を考えれば、
c[n] = Σ[r=0,n] (-1)^r binomial(2n-r,r) (2n-2r)! / (n-r)!2^(n-r) が分かって、
α(n,r) := n!(2n-r)!2^r/(2n)!(n-r)! が
0 < α(n,r+1) < α(n,r), α(n,r)→1 (n→∞) となるのを使えば
lim[n→∞] c[n]/(2n-1)!! = lim[n→∞] Σ[r=0,n] ((-1)^r/r!)α(n,r) = e^(-1)。

809:132人目の素数さん
18/10/17 19:18:42.08 LxNRGIwD.net
やっと二重階乗がでてきたのか

810:132人目の素数さん
18/10/17 21:40:01.85 RJVJEgsX.net
>>289
おお、なるほど。
素晴らしい。
それなら前スレででてきたベッセル関数もへったくれもなしに証明できますね。
今の所用意している解答はベッセル関数もへったくれもある解答です。
d[n]の方もそんな感じでできるかもしれないですね。

811:132人目の素数さん
18/10/17 21:53:46.92 LxNRGIwD.net
ジョーカーを除いたトランプ52枚を外からは中が
確認できない52個の箱の中に表を見ないで一枚ずつ入れた
そして、52個の箱の中から適当に三つの箱を選んで三枚の
カードを取り出すと三枚ともダイヤであった
このあと残りの49個の箱の中からどの箱を選んでも
箱の中のダイヤの確率は10/49である

812:132人目の素数さん
18/10/18 03:38:50.93 k/D5nzuI.net
a,b (1≦a≦b) を整数とする。
b階建てビルのエレベーターは1階からb階までを移動している。
a階でエレベータを待つとき、上からやってくる確率を求めよ。

813:132人目の素数さん
18/10/18 04:25:18.54 ybZLuwXw.net
>>793
何が同様に確からしいのかわかんねー

814:132人目の素数さん
18/10/18 12:33:59.38 EWu4uTz9.net
縦3マス、横4マスの12マスのうちランダムに選ばれた2マスにそれぞれ宝が眠っている。
AEIBFJ…の順で縦に宝を探していく方法をとるP君と、ABCDEFGH…の順で横に宝を探していく方法をとるQ君が、同時に地点Aから探索を開始した。
どっちの方が有利?
ABCD
EFGH
I JK L

815:132人目の素数さん
18/10/18 13:16:58.60 7YqgJU0i.net
>>795
移動時間とかなんにも条件ないならイーブン。

816:132人目の素数さん
18/10/18 13:36:41.89 7YqgJU0i.net
>>795
以外に自明じゃないけど結局イーブン
P : AEIBFJCGKDHL
Q : ABCDEFGHIKKL
部屋   : ABCDEFGHIKKL
先に入る:△QQQPPQQPPP△


817:132人目の素数さん
18/10/18 13:40:36.12 S3KlGNXW.net
ABCDEFGHIJKLとBCDEFGHIJKLAの争いがえぐい

818:132人目の素数さん
18/10/18 13:54:02.75 7YqgJU0i.net
ETFJKをP部屋と呼ぶ。Pはこの部屋にQより先にこの順に入室する。
BCDGHをQ部屋とよぶ。Qはこの部屋にPより先にこの順に入室する。
Aに宝があれば同着でイーブン。
Aに宝がなくLに宝があれば残りがP部屋か、Q部屋かによるのでイーブン。
2つともP部屋ならP勝ち、2つともQ部屋ならQ勝ちでその確率はイーブン。
のこり25通りは
 EIFJK
B△
C △
D  △
G   △
H    △
と5×5マスからひとつ選ぶ場合だけど△の組み合わせなら同着、
上半分ならQ勝ち、下半分ならP勝ちでイーブン。
以外に思ったより自明じゃないなぁ。


819:132人目の素数さん
18/10/18 14:19:20.33 EWu4uTz9.net
>>795
追記。問題文にあるように、ABCDEFGH…とAEIBFJ…という探索方法をとっています。P君はQ君が先にBを調べていても4ターン目にちゃんと調べることになってますよ。
要するに、相手が調べ終わった部屋も重複して調べる場合が出てきます。

820:132人目の素数さん
18/10/18 14:20:35.68 lUFq+UnC.net
>>797
いや完全に自明だろw
全ての箱等価なんだから
くじ引きと同じだぞ

821:132人目の素数さん
18/10/18 14:23:30.73 EWu4uTz9.net
>>801
全く自明じゃないよ、1マスにしか宝がないなら自明だが2マスあれば自明じゃない。
結論はネタバレになるから言わないけど案外面白い結果になる。

822:132人目の素数さん
18/10/18 14:29:52.71 lUFq+UnC.net
>>802
壮絶なバカだなあ
マスを箱と考える。
箱のセットをコピーして、A~Lのセットを2つ用意する
アタリとなっているの箱の文字はどちらも同じ。
P : AEIBFJCGKDHL
Q : ABCDEFGHIJKL
PQはどの順番でハコを開けていくか?が同じだけ。
ハコの中身がランダムで未知なのに開ける順番で差がつきうるとかお笑いだなw

823:132人目の素数さん
18/10/18 14:30:20.02 BOAck/eY.net
勝利条件が書いてないのだが

824:132人目の素数さん
18/10/18 14:30:35.44 lUFq+UnC.net
盛大に誤字ったw
どの順番でハコを開けていくか?が違うだけ が正しい

825:132人目の素数さん
18/10/18 14:50:03.58 4ou2qq4A.net
>>803
>箱のセットをコピーして、A~Lのセットを2つ用意する
それ違う問題だろ。
本問の場合片方が先に見つけたお宝は他方の手には入らない
それを踏まえた上で
P:ABCDEFGHIJKL
Q:BCDEFGHIJKLA
これでもイーブンだと思う?

826:132人目の素数さん
18/10/18 15:00:10.11 EWu4uTz9.net
>>804
あーごめん、完全に自分のミスです
先に宝を見つけた方が勝ちです。
いずれか1人が(あるいは同時に2人が)宝を見つけた時点でゲームは終了です。すいません。

827:132人目の素数さん
18/10/18 15:02:08.47 lUFq+UnC.net
>>806
100%イーブンだろwwww
頭悪いんだなw
お前の言ってるのは
「クジ引きで後に引くのは不利、先に当たりひかれちゃうかもしれないから!」
これと完全に同レベルな

828:132人目の素数さん
18/10/18 15:04:29.78 lUFq+UnC.net
>>806
マジで分からないのか?
お前の言ってるのは
「どれが当たりか全く分からない12個の箱を、開ける順番を変えるだけで
当たり引くまでの回数の期待値を変えられる」
ってことだぞ?
本気で言ってんならヤバいよw

829:132人目の素数さん
18/10/18 15:06:30.41 4ou2qq4A.net
>>808
P:ABCDEFGHIJKL
Q:BCDEFGHIJKLA
この順に部屋を調べるとして、1個だけのお宝が
A~Lにある10の場合それぞれについて
P、Q のどちらが勝つかわかる?
Aにある場合→Pが先に調べるからの勝ち
Bにある場合→同様にPの勝ち
...
のように

830:132人目の素数さん
18/10/18 15:08:01.09 4ou2qq4A.net
>>810
>Aにある場合→Pが先に調べるからPの勝ち
>Bにある場合→Qが先に調べるからQの勝ち
の間違いだった

831:132人目の素数さん
18/10/18 15:12:01.94 EWu4uTz9.net
>>809
2マスに宝がそれぞれ置いてあるんですよ??もちろん1マスにしかないならイーブンですが、2マスに宝がある場合、この2つの宝は互いに独立して配置されるわけではないんですよ。
要するに、宝が1マスに重複して置かれることがないから「宝Aがあるマスに配置された瞬間、宝Bはそのマス以外に配置されることになる」わけで、その期待値で考える理屈は通用しませんよね。

832:132人目の素数さん
18/10/18 15:15:24.25 4ou2qq4A.net
>>809
1つの当たりが10個の箱に入っているとして、
P:ABCDEFGHIJKL
Q:BCDEFGHIJKLA
このように片方が開ける順よりも1つ先の箱を開けることによって、
Qが当たりを引くまでの手数は
1/10の確率でPより9増える (当たりがAの場合)
9/10の確率でQより1減る
双方の当たりを引くまでの手数の期待値は変わらないが、
他方より1でも少なければ勝ちなのでQが勝つ確率は9/10となる

833:132人目の素数さん
18/10/18 15:16:18.29 4ou2qq4A.net
>>813
>9/10の確率でQより1減る
Pより1減る、の間違いだな
なんかグダグダ

834:132人目の素数さん
18/10/18 15:17:46.47 BOAck/eY.net
宝が一つの場合でも>>810>>811みたいなのを考えると単純な期待値の問題にはならないんじゃ?

835:132人目の素数さん
18/10/18 15:19:27.15 EWu4uTz9.net
>>815
その場合は「相手が調べ終わっている箱を確かめる」回数が多い方が負けるでしょうね、、

836:132人目の素数さん
18/10/18 15:36:38.92 7YqgJU0i.net
あれ?>>799で終わったと思ってるんだけど?
間違ってる?

837:132人目の素数さん
18/10/18 15:55:19.98 7YqgJU0i.net
コレ、直感的には自明にイーブンに見えるけど、ちゃんと考えると少なくとも自明じゃないのが面白い。
けど結局イーブンだからなぁ。
縦横でも
P:AEIJFBCGKLHD
Q:ABCDHGFEIJKL
とかにしてイーブンじゃない設定の方が良かったかも。

838:132人目の素数さん
18/10/18 16:15:00.24 7YqgJU0i.net
いや、嘘書いた。>>799の残り25通りイーブンじゃないやん。
BEが宝箱ならQ部屋のBにQが入室すらのが2ターン目、EにPが入室するのが6ターン目だからQの勝ち。
同様にして勝敗を埋めて行くと
EIFJK
B QQQQQ
C QQQQQ
D QQQQQ
G PPQQQ
H PPPPQ
となってQの勝ちですね。
直感に反してて面白い。

839:132人目の素数さん
18/10/18 16:25:38.90 7YqgJU0i.net
あかん、まだ嘘書いてる。
残りは50事象だ。

840:132人目の素数さん
18/10/18 16:31:58.81 7YqgJU0i.net
いや、合ってる。
やっぱり頭の中だけで考えるとダメだ。
ALは無視して残り10部屋で45通り。
P部屋五部屋のみから選ぶのが10通り。
Q部屋五部屋のみから選ぶのが10通り。
残りは25通り、Q勝ちの方が多い。

841:132人目の素数さん
18/10/18 19:14:50.26 y4R+MJMW.net
なるほどねえ
確かにQの方が微妙に先に見つける場合が多いな
Pが先に見つけるのは以下の26通り
CE,DE,DI,EF,EG,EH,EI,EJ,EK,EL,FG,FH,FI,FJ,FK,FL,GI,GJ,HI,HJ,IJ,IK,IL,JK,JL,KL
Qが先に見つけるのは以下の27通り
BC,BD,BF,BG,BH,BI,BJ,BK,BL,CD,CF,CG,CH,CJ,CK,CL,DF,DG,DH,DJ,DK,DL,GH,GK,GL,HK,HL
同時に見つけるのは以下の13通り
AB,AC,AD,AE,AF,AG,AH,AI,AJ,AK,AL,BE,CI

842:132人目の素数さん
18/10/18 19:46:16.03 AIa0HjDX.net
何を数え上げているのさっぱりわからんが、12C2=121なので121通りないとおかしい。
イーブンだぞ。

843:132人目の素数さん
18/10/18 19:50:19.73 Z/pf1+wY.net
>>788,789,791
e[n] = Σ[r=0,n] binomial(2n-r,r) (2n-2r)! / (n-r)!2^(n-r) と置くと、c[n], d[n]と同じ漸化式
e[n] = (2n-1)e[n-1] + e[n-2] が成り立ち、e[1]=2, e[2]=7 であるから d[n] = (e[n]-7c[n])/2。
>>789 と同様にして lim[n→∞] e[n]/(2n-1)!! = lim[n→∞] Σ[r=0,n] (1/r!)α(n,r) = e であるから
lim[n→∞] d[n]/(2n-1)!! = (e-7e^(-1))/2。
c[n]などはいろいろな表し方がある:
c[n] = Σ[r=0,n] (-1)^(n-r) binomial(n+r,2r) (2r)! / r!2^r
   = Σ[r=0,n] (-1)^(n-r) binomial(n+r,2r) (2r-1)!! (ただし (-1)!!=1 とする。)
0以下に延長すると:
e[-5]=266, e[-4]=37, e[-3]= 7, e[-2]=2, e[-1]= 1, e[0]= 1, e[1]=2, e[2]=7, e[3]=37, e[4]=266,
c[-5]=-36, c[-4]=-5, c[-3]=-1, c[-2]=0, c[-1]=-1, c[0]= 1, c[1]=0, c[2]=1, c[3]= 5, c[4]= 36,
d[-5]=259, d[-4]=36, d[-3]= 7, d[-2]=1, d[-1]= 4, d[0]=-3, d[1]=1, d[2]=0, d[3]= 1, d[4]= 7.


844:132人目の素数さん
18/10/18 19:58:07.26 y4R+MJMW.net
>>823
12C2 = 12! / (2! x 10!) = 12x11 / 2 = 66

845:132人目の素数さん
18/10/18 20:01:25.73 AIa0HjDX.net
>>825
俺の頭が湧いてるのか?
12x11/2 = 11x11=121

846:132人目の素数さん
18/10/18 20:02:07.31 AIa0HjDX.net
>>825
ごめん湧いてたwwwwwww

847:132人目の素数さん
18/10/18 23:36:54.15 ZLom+Usi.net
わからない、教えて
抽選ボックスが2つ、どちらかから1つからボールを1つだけ引き当選の有無を確認する。
抽選ボックスAはボールが3コ、ボックスBは7コ。
一等は1本、2等は2本、計3本がどちらかのボックスに偏っているとする。
この時どちらのボックスを引くのが良いか?または同じか?

848:132人目の素数さん
18/10/18 23:48:24.44 7YqgJU0i.net
>>828
> 一等は1本、2等は2本、計3本がどちらかのボックスに偏っているとする。
コレは
X : Aに一等1.二等2.Bは全部ハズレ
Y : Bに一等1,二等2,ハズレ4,Aは全部ハズレ
のいずれかであるという意味?
XとYが同様に確からしいとか、なんか条件ないと答えでないんじゃね?
同様に確からしいなら明らかに Aの方がお得だけど。

849:132人目の素数さん
18/10/19 00:05:07.75 qhs5NzN0.net
>>829
同様に確かと言えるのは3/10が当たりということとどちらかに偏ることは確かだとしか聞いてない
A:1/2 ×3/10=3/20
B:1/2 ×3/7/10=5/7
でBの方がお得になるんだけど感覚として
Aは1/2 ×1/3=1/6で当たり引けるから混乱してる

850:132人目の素数さん
18/10/19 00:11:17.55 vrUAL2J1.net
ランダムに分けるんだけど結果偏っていたという場合の考察
全ての分け方: 10C3通り
うちAに当たりが偏った分け方 : 1通り
うちBに当たりが偏った分け方 : 7C3通り

851:132人目の素数さん
18/10/19 00:12:23.88 vrUAL2J1.net
>>830
>A:1/2 ×3/10=3/20
この10はどこから出てきたw

852:132人目の素数さん
18/10/19 00:18:34.12 qhs5NzN0.net
>>832
10個からボール1つを選ぶけどAは3個しかない

853:132人目の素数さん
18/10/19 00:33:44.91 0SW2jqO2.net
(a) A に偏っている場合
3つのボックスのどれかを開ければ1/3の確率で1等、2/3の確率で2等
1等、2等のいずれかが当たる確率は100%
(b) B に偏っている場合
7つのボックスのどれかを開ければ1/7の確率で1等、2/7の確率で2等
1 等、2等のいずれかが当たる確率は3/7≒43%
Aに偏っているかBに偏っているかが同様に確からしい
(それぞれ1/2の確率)ならA の箱を開ければ1/2の確率で当たりをひける。
じゃなくて「ランダムに分けたんだけどなんか偏っちゃった!」だと
そもそもAに偏ってる(=当たりが入っている)確率自体がとても低いのでAを選ぶのは危険

854:132人目の素数さん
18/10/19 00:52:26.09 qhs5NzN0.net
>>834
そうかー
そのランダムなんだけどAってどれくらいの確率なの?

855:132人目の素数さん
18/10/19 01:11:58.87 qhs5NzN0.net
1/10c3か?そりゃ低いや
大きい箱の方に引っ張られるのかね

856:132人目の素数さん
18/10/19 01:24:07.41 5btDxqP5.net
ボックスAに一等が入っているなら
ボックスBに二等が二つ
ボックスBに一等が入っているなら
ボックスAに二等が二つ入っている
という意味だよ

857:BLACKX
18/10/19 01:29:47.49 yLZt/D6J.net
ごちゃごちゃする前に出題者です。
たとえ話でその後の回答ないので私の方から回答しに来ました。
一般的な確率でなくLOTOを計算しております。
10個のボールの中で前提が1等が1個だけで抽選をし、1等の箱が決まった時点でその箱の中で2等が決まるため同じ箱に偏るとしました。
なので834さんがお答えの通りかなり低いです。1等が3つのボールの箱に入らなければ2等はありませんから。
箱自体に当たりのある確率で30:70です。

858:132人目の素数さん
18/10/19 01:35:33.67 OCs/EBNC.net
>>824
正解です。素晴らしい。
ちなみに用意の解答
―-
f(n,x) = (-1/x d/dx)^n (exp x/x)
とおけば
x^2 f(n,x) = (2n-1)f(n-1,x) + f(n-2,x)。
とくに p[n] = f(n,1)、q[n] = f(n,-1)とおけば
p[n] = (2n-1)p[n-1] + p[n-2]、q[n] = (2n-1)q[n-1] + q[n-2]。
これとp[1] = 0、p[2] = e、q[1] = -2/e、q[2] = -7/eにより
c[n] = p[n]/e、d[n] = (-7p[n]/e + 2e q[n])2。
一方で (-1/x d/dx)^n (exp x/x)をマクローリン展開して lim[n→∞] f(n,±1)/(2n)!! = ±1。
以上により
lim[n→∞] c[n]/(2n)!! = 1/e、lim[n→∞] d[n]/(2n)!! = (-7/e+e)/2。

前わかスレに出てた変形ベッセル関数による表示を利用しています。
(本来のベッセル関数だとx=-1を代入できないのでちょっと一工夫してますが。)

859:132人目の素数さん
18/10/19 01:39:41.07 T5g/T+ww.net
それなら
Aに1等が入っている確率3/10
Aから選んで1等を当てる確率3/10x1/3=1/10、2等になる確率3/10x2/3=2/10
Bに1等が入っている確率7/10
Bから選んで1等を当てる確率7/10x1/7=1/10、2等になる確率7/10x2/7=2/10
となるからA、Bのどちらの箱を開けても損得はない
偏りがある。当たる確率は1/10。
流石LOTOどちらも満たしてるね。

860:132人目の素数さん
18/10/19 01:42:14.19 OCs/EBNC.net
あ、>>839の分母の (2n)!! の所 (2n-1)!! です。

861:132人目の素数さん
18/10/19 02:07:40.86 qhs5NzN0.net
>>838
>>840
回答ありがとうございます。納得しました
あー確率的に同じで偏りがあるから低くなるのか

862:132人目の素数さん
18/10/19 02:13:58.97 gzQJ/Bd2.net
・a[1]=2
・a[n+1]=a[n]/(1+a[1]+a[2]+…+a[n])
・b[1]=2
・b[n+1]=b[n]/{a[n]+(b[1]+b[2]+…+b[n])/n}
である数列{a[n]}および{b[n]}について以下の問いに答えよ。
(1)極限 lim[n→∞] a[n] を求めよ。
(2)極限 lim[n→∞] b[n] を求めよ。

863:132人目の素数さん
18/10/19 03:59:50.81 UmCMoNsS.net
(1)
エジプトのシエネという町では、年に一度、夏至の日の正午にだけ深い井戸の底まで太陽の光が差し込む。
シエネの北緯は何度か。
hint: 地球の自転軸は公転軸から 23.4°傾いている。
(2)
エジプト第2の都市アレキサンドリアはシエネのほぼ北にあり、その距離は 925 km である。
天文観測から、緯度の差が約 7.2°と分かった。
地球の半径(m)を概算せよ。
なお、経度の差は小さいので無視してよい。
(実際のアレキサンドリアの緯度 31.22゚N、緯度の差 7.82°)
(距離の単位は スタジア = 185 m が使われていた。)
(3)
司天台(浅草天文台)は伊能忠敬の住居(隠宅)のほぼ北にあり、その距離を測量したところ 2482 m だった。
天文観測から、2ヵ所の緯度の差は 約0.025°であることが分かった。
地球の半径(m)を概算せよ。
なお、経度の差は小さいので無視してよい。
(実際の緯度差は 0.02690°、距離は 3025 m、方位角 9.4゚W)
(距離の単位は 町、間が使われている。)

864:132人目の素数さん
18/10/19 04:04:12.21 UmCMoNsS.net
>>844
伊能忠敬の住居(隠宅)は
 〒135-0048 江東区門前仲町1丁目18-3先
 緯度 35.67452゚N
 経度 139.79422゚E
司天台(浅草天文台)は
 〒111-0053 台東区浅草橋3丁目20-12
 緯度 35.70142゚N
 経度 139.78876゚E
にあった。
・おもしろ地図と測量
URLリンク(www5a.biglobe.ne.jp) → 史跡所在リスト

(4) 地球を「GRS80楕円体」として、この2ヵ所の距離と方位角を計算せよ。
・GRS80楕円体
 長半径(赤道半径)a = 6378137(m)
 扁平率 f = 1/298.257222101
・測量計算(距離と方位角の計算)- 国土地理院
URLリンク(vldb.gsi.go.jp) → 十進法度単位

865:132人目の素数さん
18/10/19 07:22:50.64 UmCMoNsS.net
そうだったのか…
伊能氏が身を削るようにして日本各地の正確な緯度・経度を決めていったのは
地面が曲がっている影響を補正することで、天文予測の精度を画期的に向上するためだった。
日本地図はオマケだった。

866:132人目の素数さん
18/10/19 07:46:11.79 UmCMoNsS.net
>>846
毎日新聞・夕刊
URLリンク(mainichi.jp)没後200年・伊能忠敬を歩く
URLリンク(mainichi.jp)セカンドステージ
URLリンク(mainichi.jp)セカンドステージ/1

867:132人目の素数さん
18/10/19 09:33:43.48 hAbKt7Ps.net
>>795
この問題でQの方が有利になるならば、横長い形をしたマス目のうち2マスに宝を埋めた場合縦に沿って探すより横に沿って探した方が勝ちやすいことが一般の場合にも言えるであろうことが容易に想像出来るわけだけど、その証明は出来るだろうか?

868:132人目の素数さん
18/10/19 09:34:04.80 hAbKt7Ps.net
分かスレに提出した方がいいかもしれないな

869:132人目の素数さん
18/10/19 14:19:39.14 rredQkJV.net
高校数学で解けるであろう問題を2つほど
次の定理を示せ
1. 任意の正の整数は連続しない(則ち,項番号が隣りあわない)フィボナッチ数の和として一意的に表される
2. L_(n+2)=L_(n+1)+L_n, L₁=1, L₂=3
を満たす数列(L_n)は任意の素数pに対してL_p≡1 modpを満たす
序でに1問目は「ゼッケンドルフの定理」,又2問目に出てくる数列は「フィボナッチ数列に付随するリュカ数列」(「ルカス数列」「ルーカス数列とも云う)なる名前が付いているらしい

870:132人目の素数さん
18/10/19 14:54:26.57 UmCMoNsS.net
>>843
S = 1 + Σ(k=1,∞) a[n] = 3.91202535564143
(1)
 a[n] ~ 11.12728469988 / S^n → 0 (n→∞)
(2)
 b[n+1] ≒ n・b[n]/{b[1]+b[2]+…+b[n]} → 1,

871:132人目の素数さん
18/10/21 21:14:25.02 l2E3XuiN.net
>>795
シミュレーションしてみた。
1万回からPの方が先に見つける頻度を出すのを1万回繰り返したときの確率は
> summary(re)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3749 0.3906 0.3939 0.3939 0.3972 0.4132
となって0.5より小さいのでQの方が有利という結果になった

Rでのスクリプトはこれ
x=c(1,1,rep(0,10))
is.P1st <- function(){
Q=sample(x)
z=matrix(Q,ncol=4,byrow=T)
P=as.vector(z)
which.max(P) < which.max(Q)
}
re=replicate(1e4,mean(replicate(1e4,is.P1st())))
summary(re)

872:132人目の素数さん
18/10/21 21:28:28.30 l2E3XuiN.net
>>852
シミュレーションにバグがある。
同時に見つける場合を考えてなかったわ

873:132人目の素数さん
18/10/21 21:45:15.93 l2E3XuiN.net
>>853
シミュレーションしたら >822の通リになりました。
> x=c(1,1,rep(0,10))
> PQ <- function(){
+ Q=sample(x)
+ z=matrix(Q,ncol=4,byrow=T)
+ P=as.vector(z)
+ c( even=which.max(P) == which.max(Q),
+ p1st=which.max(P) < which.max(Q),
+ q1st=which.max(P) > which.max(Q))
+
+ }
> k=1e6
> re=replicate(k,PQ())
> mean(re['even',]) ; 13/(26+27+13)
[1] 0.197025
[1] 0.1969697
> mean(re['p1st',]) ; 26/(26+27+13)
[1] 0.393803
[1] 0.3939394
> mean(re['q1st',]) ; 27/(26+27+13)
[1] 0.409172
[1] 0.4090909

874:132人目の素数さん
18/10/22 02:11:35.13 iMyh9xwO.net
>795
縦mマス、横nマスのm*nマスのうちランダムに選ばれたkマスにそれぞれ宝が眠っている。
AEIBFJ…の順で縦に宝を探していく方法をとるP君と、ABCDEFGH…の順で横に宝を探していく方法をとるQ君が、同時に地点Aから探索を開始した。
どっちの方が有利?
という風に一般化してみた。
>822のカウントをRでやってみた。
例えば
縦5マス、横10マス、宝3マスだと
P1st Q1st even
8832 9142 1626
(P1stはPが先に宝を発見する宝の配置の数)

Rのコードはここにおいた
Executeのクリックで実行(数値を変えて実行も可能)
URLリンク(tpcg.io)

875:132人目の素数さん
18/10/22 19:03:02.66 N2Ov4rc5.net
ある中学入試の問題だけど
方程式なしで小学生はどうやって解くのだろう?
 ある牧場では100頭の羊を放すと15日間で牧草がなくなり、120頭の羊を放すと10日間で牧草が食べつくされました。 
この牧場で80頭の羊を10日間放した後、さらに何頭xかの羊を加えたところ、加えてから4日間で牧草は食べつくされました。 後から加えた羊は何頭ですか。
ただし、牧草は1日に一定量a生え、また、どの羊も1日で同じ量uの牧草を食べるものとします。
方程式を立てていいなら
1500u=15a + b
1200u=10a + b
a=60u
b=600u
80*14u + 4xu = 14a + b =14*60u + 600u
x=(14*60+600-14*80)/4
で俺でも答えられる。

876:132人目の素数さん
18/10/22 19:45:49.05 ScrwDgzM.net
>>856
線分図の左がはじめの草の量、
右がそれぞれ14回、9回分増えた草の量
(○の中の数字は1日に草の増える量)
(a) 100頭15日(のべ1500匹)├──┼───┤⑭増える
(b) 120頭10日(のべ1200匹)├──┼──┤⑨増える
するとのべ300匹で⑤だけの草を食べることができる
草を①だけ食べるには60匹必要
(b)を使うと、のべ1200匹が食べた草の総量は1200÷60で⑳と求まる
よってはじめの草の量は⑪
(c) 80頭10日(のべ800匹)├──┼──┤⑨増える
このうち、10日経った時点で(800/60)=(40/3)食べられるので
残りは⑳-(40/3)=(20/3)
あと4日間で全体は(20/3)+④=(32/3)になるので
これを食べるには、4日間でのべ60×32/3=640頭必要
1日あたり160頭必要ということだから、160-80=80頭増やしたことになる

877:132人目の素数さん
18/10/22 20:11:53.26 N2Ov4rc5.net
>>857
前日まで生えた分だけでなくその日にリアルタイムで生えているのも食べるから増えるのは15日と10日分では?

878:132人目の素数さん
18/10/22 20:20:13.50 ScrwDgzM.net
>>858
確かに
⑭は⑮に、⑨は⑩に訂正すると
はじめの草の量は⑩になって、あとは大丈夫そうですね

879:132人目の素数さん
18/10/22 20:55:25.42 N2Ov4rc5.net
>>859
(800/60)=(40/3)は80頭が10日で食べた量は40/3(13.33)日で生えた
草の量だが⑳-(40/3)=(20/3)の意味不明。
はじめあった草の量⑩も出てこないし。

880:132人目の素数さん
18/10/22 21:02:44.62 ScrwDgzM.net
>>860
(c)の図(10日目が終わった時点)で
はじめの草の量⑩に、10日間で増える草の量⑩を加えて⑳
80頭の羊はそのうち(40/3)を食べてるので、
10日目が終わった時点で残りの草の量は(20/3)
という意味です

881:132人目の素数さん
18/10/22 21:22:18.74 N2Ov4rc5.net
>>861
理解できました。
一匹の羊が1日に食べる量を1unitとして考えた方が易しくないかな。分数も出てこないし。
1日に60unit草が生える、最初の草量は600unit。

882:132人目の素数さん
18/10/22 21:24:56.34 UlyuzeXD.net
(100×15-120×10)/5 = 60 だからこの牧場はストック0でも自然増加分で60頭の羊が賄える。
最初のストックは容量を120-60=60頭超過した時10日で食い尽くす量だから600頭日分。
容量超過が80-60=20頭の時10日で減らしたストックは200頭日分だから残りストックは400頭日分。
それを4日で食べ尽くしたので最後の4日の容量超過は100頭。
増えた羊は80頭。

883:132人目の素数さん
18/10/22 22:12:55.60 E8LyAx4E.net
大量に入荷したアルヨ
       ε ⌒ヘ⌒ヽフ
       (   (  ・ω・)
      ε ⌒ヘ⌒ヽフ⌒ヽフ
     (   (  ・ω・) ω・)
   ε ⌒ヘ⌒ヽフ⌒ヘ⌒ヽフ⌒ヽフ
  (   (  ・ω・) (  ・ω・)ω・)
  ε ⌒ヘ⌒ヽフ⌒ヘ⌒ヽフヘ⌒ヽフ⌒ヽフ
 (   (  ・ω・) (  ・ω・)


884: ・ω・)ω・)   しー し─Jしー し─J し─J ─J



885:132人目の素数さん
18/10/23 00:57:47.42 REh3NVF5.net
■最初からある草の量をbとおく
15a+b=1500u……①
10a+b=1200u……②
②からb=1200u-10aこれを①に代入して
15a+1200u-10a=1500u
5a=300u
a=60u
b=600u
80頭の羊はx頭の羊を加えられた後も牧草を
食べつづけるので 80x14u
x頭の羊は4日間牧草を食べるので 4xu
14日間で消費される牧草の量は 14a+b
80x14u+4xu=14a+b
4xu=14a+b-80x14u
   =14x60u+600u-80x14u
   =840u+600u-1120u
   =1440u-1120u
   =320u
∴x=320u/4u=80


886:132人目の素数さん
18/10/23 07:48:20.91 L2HgjxkJ.net
>>865
方程式は問題とともに既出なのだから
レスを重ねるなら別解か誤答でないと芸にならんぞw

887:132人目の素数さん
18/10/23 07:59:42.41 L2HgjxkJ.net
数字の1と2だけを使って整数を作り、小さい方から並べます。1,2,11,12,21,22・・・このとき、次の問に答えなさい。
(1)1212121212は小さい方から数えて何番目ですか。

888:132人目の素数さん
18/10/23 11:34:27.92 QCR0wRAh.net
任意の自然数nに対して、2005^n が、互いに素な2つの整数の平方和で表せることを示せ。

889:132人目の素数さん
18/10/23 12:02:39.33 3PnXS1dT.net
>>867
1364番め
digi = function(x){ # 1000 -> 4 , 999 -> 3
n=ceiling(log10(x))
ifelse(10^n==x,n+1,n)
}
n2a <- function(num){ # nmu to array 122 -> c(1,2,2)
N=10
r=num%%N
q=num%/%N
while(q>0){
r=append(q%%N,r)
q=q%/%N
}
return(r)
}
one2n <- function(x){ # 121 -> 13
a=n2a(x)
k=digi(x)
p=2^((k-1):0)
sum(a*p)
}
x=1212121212
> one2n(x)
[1] 1364

890:132人目の素数さん
18/10/23 12:10:36.27 3PnXS1dT.net
>>867
(2)1000番目にくる数は何ですか?

891:132人目の素数さん
18/10/23 12:32:10.52 L2HgjxkJ.net
>>870
このプログラミングに難渋してる

892:132人目の素数さん
18/10/23 12:41:03.14 ow6G4yxf.net
Prelude Data.List> let xs = concat $ iterate (¥x->[1:n| n<-x] ++ [2:n|n<-x]) [[1],[2]]
Prelude Data.List> xs !! 999
[2,2,2,2,1,2,1,1,2]

893:132人目の素数さん
18/10/23 12:58:41.42 foOj88Cn.net
>>868
2005 = (20^2 + 1)(2^2 + 1) = 41^2 + 18^2 = 39^2 + 22^2,
下の公式により 2005^n は2つの平方の和。
互いに素となるかどうか…
〔公式〕
(aa+bb)(㏄+dd) = (ad-bc)^2 + (ac+bd)^2 = (ad+bc)^2 + (ac-bd)^2,
URLリンク(www.quora.com)

894:132人目の素数さん
18/10/23 13:00:38.96 3PnXS1dT.net
>>870
library(gtools)
perm=permutations(2,9,v=1:2,rep=T)
onetwo=function(x){
n=length(x)
sum(x*2^((n-1):0))
}
perm[which(apply(perm,1,onetwo)==1000),]
> perm[which(apply(perm,1,onetwo)==1000),]
[1] 2 2 2 2 1 2 1 1 2
と総当たりで出すには出せるが、全くエレガントでない :(

895:132人目の素数さん
18/10/23 13:01:02.40 3PnXS1dT.net
>>872
ありがとうございました。

896:132人目の素数さん
18/10/23 13:16:16.58 ow6G4yxf.net
>>868
N(a+bi) = a^2 + b^2 として ((20+i)(2+i))^n = u + vi とおけば
2005^n = (N(20 + i)N(2+i))^n = N(((20+i)(2+i))^n) = u^2 + v^2
ここで (u,v) のZ[i] における素因子 p + qi をとれば p - qi | (u,v) | u + vi でもある。
しかし Z[i] は UFD だから p+qi = (20+i)i^e、(2+i)i^e とおける。
このときいずれにせよ p - qi = (20-i)(-i)^e、(2-i)(-i)^e は u + vi の素因子でないので矛盾。

897:132人目の素数さん
18/10/23 13:44:30.07 foOj88Cn.net
>>850
(1)
正整数nについての帰納法で。
・n≦3 のとき
 1 = F_2、2 = F_3、3 = F_4
* 「和」は1項だけの場合もある。
・n>3 のとき
 nを超えない最大のフィボナッチ数を F_m とする。 F_m ≦ n < F_{m+1}
もしも和が F_m を含まないなら、
 Σ(k=0,[(m-2)/2]) F_{m-1-2k} = Σ(k=0,[(m-2)/2]) ( F_{m-2k} - F_{m-2k-2} ) = F_m - 1 < F_m ≦ n,
となり矛盾する。 よって、和は F_m を含む。
 帰納法の仮定により、n - F_m は連続しないフィボナッチ数の和である。
 n - F_m < F_{m+1} - F_m = F_{m-1}
∴ n - F_m に対する和は F_{m-1} を含まないから F_m と連続しない。
∴ nについても命題が成立する。

898:132人目の素数さん
18/10/23 14:17:45.16 vzNHBpki.net
>>867
その数列において、k桁の整数は2^k個含まれる
1212121212は10桁だが、1桁から9桁のすべての数の項数はΣ[j=1,9]2^j=1022
11********台は2^8=256個
1211******台は2^6=64個
121211****台は2^4=16個
12121211**台は2^2=4個
よって
1212121212は1022+256+64+16+4+2=1364項目
>>870
1022項目が222222222なので、これの22項前を考える
2222*****台が32項あるので、
222211111は第991(=1022-32+1)項となる
222211222が第998項なので、第1000項は222212112

899:132人目の素数さん
18/10/23 15:06:47.65 SimIKxf4.net
>>867
> 1,2,11,12,21,22・・・
 10, 11, 100, 101, 110, 111,...
1→0, 2→1 と置き換え、左端に1を付け加えたものを2進数とみなすと
順序を含め2以上の整数と一対一に対応する。
1212121212 → 10101010101(2) = 1365 であるから、1212121212は1364番目。
>>870
1001 = 1111101001(2) であるから、1000番目にくる数は 222212112。

900:132人目の素数さん
18/10/23 15:26:36.98 3PnXS1dT.net
>>879
お見事です。
2進法に似ているのは気づいたのですが
>左端に1を付け加えたもの
ってどういうとこから思いつくのでしょうか?

901:132人目の素数さん
18/10/23 16:06:50.34 3PnXS1dT.net
>>879
お知恵を拝借して 1億個めと1兆個めを計算してみました。
> digit12(10^8) # 1億め
12222212122221111211111112
> digit12(10^12) # 1兆め
221211122121211212112121112111111111112
Rのコードはここ
URLリンク(tpcg.io)

902:132人目の素数さん
18/10/23 17:08:43.57 xS8rsyai.net
一億一と一兆一を二進数に直すコード……

903:132人目の素数さん
18/10/23 19:08:57.29 3PnXS1dT.net
>>882
dec2n n = concat . (map show) . reverse . sub
where sub 0 = []
sub num = mod num n : sub (div num n)
main = do
let n=2
putStr "Input integer : "
str <- getLine
let num = read str
putStrLn $ dec2n n num
Haskellだと一京一も2進数にしてくれた。
Prelude> main
Input integer : 10000000000000001
100011100001101111001001101111110000010000000000000001
ゆえに一京めは
11122211112212222112112212222221111121111111111111112

904:132人目の素数さん
18/10/23 19:34:04.67 t5/873r2.net
f 1 =[1]
f n = reverse $ f' (n-1) 2 0 1
f' 0 _ _ _ = []
f' n k j i | n `mod` k == j = 1: f' (n-j) (k*2) k (k*2)
      | otherwise = 2: f' (n-i) (k*2) k (k*2)
f (10^8)
[1,2,2,2,2,2,1,2,1,2,2,2,2,1,1,1,1,2,1,1,1,1,1,1,1,2]


905:132人目の素数さん
18/10/23 19:35:27.73 3PnXS1dT.net
>>883
10の68乗を無量大数というらしい
無量大数+1を2進数表示できるかやってみた。
Prelude> :main
Input integer : 100000000000000000000000000000000000000000000000000000000000000000001
1110110101100011101000100011000111010100110001001111101100100111010011001010011110101010101010000110001111101110010010111101110101001000010101101100010111000100000000000000000000000000000000000000000000000000000000000000000001
さすが不定長整数を扱えるHaskell。

906:132人目の素数さん
18/10/23 19:53:24.49 REh3NVF5.net
>>885
1000不可説不可説転でお願いします

907:132人目の素数さん
18/10/23 19:56:16.38 Ar36TC8v.net
>>880
> >左端に1を付け加えたもの
> ってどういうとこから思いつくのでしょうか?
思いつくのは無意識の過程で分からないから、それまでに考えていたことをいうと
1と2の二つの文字 → 2進数に関連か? → 2進数に対応させよう
・1→0, 2→1 と置き換えるだけでは 0,00,000などが重なる → 区別するには? → (区別のためのマーカーがあればいい)
・問題の数字列は1桁では2つ、2桁では4つ、n桁では2^n個 → 2進数では? → (左端の1を除いてn桁で2^n個)
⇒左端に1を付け加えればいいかも? → あとは検証
()内はそのとき無意識には考えていたかもしれないけど、意識したのは検証時だったこと。
その前に「左端に1を…」を思いついた。でも無意識でも必要なことだったと思う。

908:132人目の素数さん
18/10/23 20:35:36.61 3PnXS1dT.net
>>886
Wikipediaによると10の372183838819776444413065976878496481295乗とのこと
Prelude> dec2n n = concat . (map show) . reverse . sub where sub 0 = [] ; sub num = mod num n : sub (div num n)
Prelude> putStrLn $ dec2n 2 (100*10^372183838819776444413065976878496481295)
只今、計算中。フリーズするだろうな。
>>887
解説ありがとうございました。その才能は羨ましい限りです。

909:132人目の素数さん
18/10/23 20:45:06.91 3PnXS1dT.net
>>888
残念ながら予想どおり
GNU MP: Cannot allocate memory (size=4204265496)
のエラーメッセージがでて終了しました。

910:132人目の素数さん
18/10/23 21:38:28.22 L2HgjxkJ.net
これも中学入試の問題
x/6=(510+x)/21で解けるけど
方程式なしだとどうする?
ある列車が510mの鉄橋を渡るのに21秒かかりました。また、線路のすぐそばで見ていたA子さんの前を列車が通るのに6秒かかりました。 この列車の長さを求めなさい。ただし、列車は鉄橋を渡るときも、A子さんの前を通るときも同じ一定の速度で走ったとものとします。

911:132人目の素数さん
18/10/23 21:48:37.47 a43+RGEZ.net
A子さんの代わりに鉄橋の端っこだと考えれば簡単。

912:132人目の素数さん
18/10/23 22:47:39.63 L2HgjxkJ.net
これも中学入試
A君、B君、C君の3人である作業をすると、終わるまで10日かかります。A君、B君の2人で同じ作業をすると、終わるまで15日かかります。このとき次の問に答えなさい。
(1)C君1人で同じ作業をすると、終わるまで何日かかりますか。
(2)B君、C君の2人で同じ作業を5日間して、残りをA君が1人ですると、さらに17日かかりました。同じ作業をB君1人ですると 何日かかりますか。
方程式を使ってよければ
全作業量をu(適当な単位で30単位とすると計算が楽)として
(a+b)+c)=u/10
(a+b)=u/15
からu/c=30日
5(b+c)+17a=u
5(b+u/30)+17(u/15-b)=uから
u/b=40日
と出せる。
学習塾での特殊訓練も方程式もなしで解く小学生は凄いなと思う。

913:132人目の素数さん
18/10/23 22:50:00.21 REh3NVF5.net
『列車が鉄橋を渡る』とは何か?
鉄橋の始点をa、終点をbとすると
列車の先頭がaを通過してから列車の最後部がbを
通過するまでである
区間[a,b]に列車の長さxを足したものを
通過時間で割ると (510+x)/21……①
xが点Aを通過する時間でxを割ると x/6……②
列車は①と②を同じ速度で走るので
(510+x)/21=x/6
6(510+x)=21x
3060+6x-21x=0
15x=3060
∴x=204

914:132人目の素数さん
18/10/23 22:56:10.69 L2HgjxkJ.net
>>893
方程式は問題とともに既出なのだから
レスを重ねるなら別解か誤答でないと芸にならんぞw

915:132人目の素数さん
18/10/23 22:57:38.97 vzNHBpki.net
>>890
列車が鉄橋を渡り終わるのは、
鉄橋と自分の長さを合わせた距離を走ったとき
自分の長さは6秒で走れるので、鉄橋の長さ510mは21-6=15秒で走ることができる
よって列車の速さは510/15=34(m/s)
ゆえに列車の長さは34×6=204(m)

916:132人目の素数さん
18/10/23 23:12:53.97 REh3NVF5.net
列車の長さxは6秒、鉄橋の長さ+xは21秒で通過する
つまり、鉄橋の長さは15秒で通過する
15/6=2.5なので鉄橋の長さは列車の長さの2.5倍
すなわち、鉄橋の長さ510mの2.5分の1が列車の長さ
∴x=510/2.5=204

917:132人目の素数さん
18/10/23 23:16:21.68 xS8rsyai.net
どっちもいいねぇ

918:132人目の素数さん
18/10/24 14:53:25.67 V7W4cdgn.net
これも中学の入試問題
図1のように一辺4cmの正方形にちょうど入る大きさの円Oがある。
図2のように円Oの周上に点Aがあり, OAの中点をMとする。点Aを中心として点Mを通る円をかき, 円Aとする。円Oの周上に点B, Pが, 円Aの周上に点Qがあり, 次の条件をみたしている。
・∠AOB=45°
・BQと円Aは接している
・OPとBQは平行
このとき, 直線AP, BP, 円Oの短い方の弧ABで囲まれた面積として考えられるものをすべて答えなさい。円周率は3.14とする。
図1 URLリンク(i.imgur.com)
図2 URLリンク(i.imgur.com)

919:132人目の素数さん
18/10/24 19:23:48.06 tlRvSxoq.net
>>898
わからんから図だけかいてみたぞ
URLリンク(i.imgur.com)

920:132人目の素数さん
18/10/25 03:03:45.59 TU00TWLl.net
svg で作成
URLリンク(svgur.com)

921:132人目の素数さん
18/10/25 03:19:43.20 TU00TWLl.net
>>898
>・∠AOB=45°
てか、あれ?こんな条件あったのか?見落としてた……orz

922:132人目の素数さん
18/10/25 03:27:21.03 YZ4qGSfK.net
>>898
これ難しすぎでは?

923:132人目の素数さん
18/10/25 04:32:45.13 eJBnnSf5.net
再挑戦
URLリンク(svgur.com)

924:132人目の素数さん
18/10/25 05:02:35.92 5Y7K/FwR.net
Qの位置とPの位置の組合せで
全部で4パターンあるのかな

925:132人目の素数さん
18/10/25 20:06:54.43 yIeks/2s.net
>>848
横の方が有利と一般化できないみたい。
URLリンク(rio2016.2ch.net)

926:132人目の素数さん
18/10/26 12:49:23.79 3qSlBHtb.net
>>898
これ大人気なく三角比使えば綺麗に解けるね。
どこの問題ですか?
これ中学入試ってすごいなぁ。

927:132人目の素数さん
18/10/26 20:20:00.32 MkOm1coU.net
>>795
Ωの部分集合を事象と言う
Ω自身は全事象と言う
最初に探す方向を i
行または列が変わる時を j として
P君とQ君のうちどちらが先に宝を見つけるのかという
事象Aと事象Bを考える.
A={(i,j)| i または j が宝}
B={(i,j)| i または j が宝}
縦方向の探査をn、横方向の探査をn+1とすると
調査する全範囲はn(n+1)
Ω={n(n+1)|(n≧1)}
■縦方向に探査をするP君の確率空間は
Ω={(i,j)|1≦i≦n,1≦j≦n(n+1)}から
#A=n^2(n+1)-{n(n+1)-1}(n-1)
  =n^2(n+1)-{n(n^2-1)-(n-1)}
  =n^3+n^2-n^3+n+n-1
  =n^2+2n-1
#Aは事象Aに含まれる要素の個数
■横方向に探査をするQ君の確率空間は
Ω={(i,j)|1≦i≦n+1,1≦j≦n(n+1)}から
#B=n(n+1)^2-n{n(n+1)-1}
  =n(n^2+2n+1)-n(n^2+n-1)
  =n^3+2n^2+n-n^3-n^2+n
  =n^2+2n
#Bは事象Bに含まれる要素の個数
∴P(A)={(n+1)^2-2}/{n^2(n+1)}
∴P(B)={(n+1)^2-1}/{n(n+1)^2}


928:132人目の素数さん
18/10/26 20:32:41.71 w2SAJyTA.net
>>907
読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。

929:132人目の素数さん
18/10/26 20:47:58.51 Jik/lAlw.net
>>907
読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。
n=2
> ((n+1)^2-2)/(n^2*(n+1)) + ((n+1)^2-1)/(n*(n+1)^2)
[1] 1.027778
確率が1を超えてるじゃん。

930:132人目の素数さん
18/10/26 20:51:09.50 MBLKLvLH.net
(1)|α|≠r>0を満たす複素数の定数αと実定数rをとる。
|z-α|=rを満たす全てのzについて1/(z')を複素数平面上にとったとき、その図形を求めよ。ただしx'とはxの複素共役である。
(2)xy平面内部に直線x=-1, x=1をとる。
また、点(1/2, 0)または(-1/2, 0)を中心とし、原点を通る円のうちy≧0の部分をそれぞれC_a, C_bと定める。
また単位円のうちy≧0の部分をC_0とする。
任意の自然数kについて、
C_(k-1)とC_aとC_bに同時に接する円のうち中心がx=0かつy>0の領域にあるものをC_kとする。
自然数nについてC_nを求めよ。

931:132人目の素数さん
18/10/26 20:59:27.47 MkOm1coU.net
>>909
事象Aと事象Bで別々に確率空間が設定されているのに
何で足す必要がある?

932:イナ
18/10/26 22:07:37.20 QL5Rb1rc.net
>>898
円Oの半径は、
oa=ob=oc=od=2√2
円Oの円周は、
2×3.14×2√2=(12.56)√2
AB=(45/360)×(12.56)√2
=(1.57)√2
OAB=OA×OB×(1/2)
=2√2×(1.57)√2×(1/2)
=2×1.57
=3.14
Pは4点考えられるが、直線ABに対するPの位置は2つと見て、面積は、
3.14×(1/2)=1.57(c㎡)
または、
3.14×(3/2)=4.71(c㎡)

933:イナ
18/10/26 22:11:43.71 QL5Rb1rc.net
>>912修正。
円Oの半径は、
oa=ob=oc=od=2√2
円Oの円周は、
2×3.14×2√2=(12.56)√2
AB=(45/360)×(12.56)√2
=(1.57)√2
OAB=OA×AB×(1/2)
=2√2×(1.57)√2×(1/2)
=2×1.57
=3.14
Pは4点考えられるが、直線ABに対するPの位置は2つと見て、面積は、
3.14×(1/2)=1.57(c㎡)
または
3.14×(3/2)=4.71(c㎡)

934:132人目の素数さん
18/10/26 22:38:03.51 Jik/lAlw.net
>>911
P君とQ君のうちどちらが先に宝を見つけるか、を足した確率がなんで1を超えるんだよ?

935:132人目の素数さん
18/10/26 22:45:06.22 Jik/lAlw.net
>>911
> n=1
> ((n+1)^2-2)/(n^2*(n+1))
[1] 1

936:132人目の素数さん
18/10/26 23:11:45.66 CMAX0Lj4.net
>>912
算数だから√は使わんだろ

937:イナ
18/10/26 23:23:11.51 QL5Rb1rc.net
>>913訂正。
円Oの半径は、2つ掛けあわせて2になる数を○2とすると、
oa=ob=oc=od=2○2
円Oの円周は、
2×3.14×2○2=(12.56)○2
AB=(45/360)×(12.56)○2
=(1.57)○2
OAB=OA×AB×(1/2)
=2√2×(1.57)○2×(1/2)
=2×1.57
=3.14
Pは4点考えられるが、直線ABに対するPの位置は2つと見て、面積は、
3.14×(1/2)=1.57(c㎡)
または
3.14×(3/2)=4.71(c㎡)


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch