19/11/24 01:10:56.95 .net
ちょっと思った疑問です。
正方形(別に長方形でも構わない)の
上辺と底辺を接着し、その後、左辺と右辺を接着するとドーナツが出来るのですが、これは
左辺と右辺を先に接着し、その後、上辺と底辺を接着して出来たドーナツとは別物ですよね?
866:132人目の素数さん
19/11/24 01:26:42.07 Z5cMo+ZY.net
同じ
867:132人目の素数さん
19/11/24 01:37:55.30 UgLzXFm4.net
トーラスという多様体としては同相だけど3次元空間への埋め込まれ方は区別できるんでないの
868:132人目の素数さん
19/11/24 15:15:39 DQSKnZ/L.net
埋め込まれ方はトーラスの性質なのか?
869:132人目の素数さん
19/11/24 16:16:42.74 NJbzb8v3.net
>>834
はぁ
何を持って性質というのかによるだ
870:132人目の素数さん
19/11/25 18:27:07.35 7bcXb2uU.net
すみません。当たり前のこと書いてるかもしれないんですけど、テイラー展開見てて思ったんですけど、微分って無限次元の行列で書けますか?
871:132人目の素数さん
19/11/25 18:39:17.54 ZXpPiU+m.net
テイラー展開できるとは限らない
テイラー展開は場所によって異なる
872:132人目の素数さん
19/11/25 19:01:07.12 7bcXb2uU.net
>>837
なら例えば、ある区間でフーリエ変換して、これを一種の線形結合と見てこの区間に限って微分を無限次元で表現することは可能ですか?
873:132人目の素数さん
19/11/25 19:01:36.94 7bcXb2uU.net
>>838
すみません無限次元の行列で、です。
874:132人目の素数さん
19/11/25 19:23:49.46 ZXpPiU+m.net
>>838
フーリエ変換できるとは限らない
フーリエ変換は線形結合ではない
875:132人目の素数さん
19/11/25 19:39:12.59 7bcXb2uU.net
>>840
テイラー展開可能な場合で、収束半径内でもできませんか?
876:132人目の素数さん
19/11/25 19:44:17.28 7bcXb2uU.net
>>840
何度もすみません。フーリエ変換とフーリエ級数の違いも知らなくて。
877:132人目の素数さん
19/11/25 19:48:53.07 AYxMotpO.net
>>842
謝れば済む程度の問題ではない。
878:132人目の素数さん
19/11/25 20:13:40.74 TMQX4009.net
>>842
謝っても済まない程度の問題ではない。
879:132人目の素数さん
19/11/25 20:22:36.50 P7IpZGA+.net
>>842
謝らなくても済む問題でもない。
880:132人目の素数さん
19/11/25 20:26:59.15 AYxMotpO.net
焼き土下座でも切腹でも済まされないな。
881:132人目の素数さん
19/11/25 23:48:33.06 i5E19iUZ.net
やや凍り付く質問者。追い打ちをかける回答者群。
厳しいね、このサイトは。ただ15年ぐらい前はもっと優しかったな、
新人には
882:132人目の素数さん
19/11/26 00:43:12.71 pUzbOpRc.net
883:(謝れば|謝っても|謝らなくても|謝らなければ)(済む|済まない)程度の問題(ではない|である)
884:132人目の素数さん
19/11/26 01:12:25.58 q3rF669j.net
元々は微分d/dxが行列で表現できるかどうかの質問だったはずなのに、的外れな頭の悪い回答者に絡まれてかわいそう
結論としては可能
テイラー級数に作用する無限行列として表現可能
885:132人目の素数さん
19/11/26 12:58:38.38 pUzbOpRc.net
級数解法でも見てみたら?
886:132人目の素数さん
19/11/26 14:28:21.98 D0gKLR5f.net
>>836
量子力学のうち行列力学じゃ普通だな
887:132人目の素数さん
19/11/26 19:59:47.80 kcrLQ+HI.net
836 です。厳しい意見から優しい方までみなさんありがとうございます。
もし微分が行列でかけるような状況があるとすると積分が逆行列に対応してくるんでしょうか?
自分で気付けたことなら興味があるので勉強してみたいのですが、行列力学とか関数解析なのですか?
888:132人目の素数さん
19/11/26 20:30:48.11 kcrLQ+HI.net
>>850
級数解法というのも少し調べてみました。
微分方程式興味なかったんですけど途端に勉強してみたくなってきました。ありがとうございます!
889:132人目の素数さん
19/11/26 20:58:41 O2kV1EGs.net
定数項微分したら0なっちゃいますから、行列で書くとxの0次の項のところは全部0が並ぶんでしょうね
ということは行列式が0なので逆行列はないということになります
これは、結局不定積分が一意的に定まらないということに対応しているわけですね
積分も行列でかけますが、微分の逆行列ではかけません
積分定数決めないといけないですからね
890:132人目の素数さん
19/11/26 21:57:38.97 q3rF669j.net
無限行列の行列式(汎関数行列式?)でも一般化逆行列のようなものがあれば、もしかしたら積分(の行列表現)が微分の一般化逆行列として書けるかもしれない
詳しくは知らんし割とどうでもいい
891:132人目の素数さん
19/11/26 21:59:40.73 kcrLQ+HI.net
>>854
ありがとうございます!
ずっと代数ばっかり勉強してて、高校の微積すら忘れかけてたんですけど、改めてその状態から微積はじめたら全部が線形変換に見えて少し感動してしまって色々質問してしまいました。
892:132人目の素数さん
19/11/26 22:00:24.06 q3rF669j.net
>>855
>無限行列の行列式(汎関数行列式?)でも
なんか抜けてた
無限行列の行列式(汎関数行列式?)が0でも、ね
893:132人目の素数さん
19/11/26 22:03:07.80 q3rF669j.net
>>856
それなら微分代数やれば?
俺も似たようなもんで、合成関数の微分が微分環の間の写像(not準同型)に対する微分の定義を与えるものにしか見えない
894:132人目の素数さん
19/11/26 22:23:32 DZhu0+Eu.net
作用素として微分操作積分操作を見るのはそんなに珍奇なものなのか?。
895:132人目の素数さん
19/11/26 23:54:17.33 LiGlGG7M.net
>>858
微分ガロア理論とかやってみたいです。
>>859
たしかにできる人なら行列をならったその日に、この程度のことは思い付くんだろうなと思いました。
みんながそのレベルなら少し凹みますが、独学なのでどの程度のことが当たり前なのかさっぱり分かりません。数学教室とか通ってみようかなと思ってます。
896:132人目の素数さん
19/11/27 01:22:36.10 ffwXPtoh.net
リーマンロッホの定理から何がわかるんですか?
リーマン面の種数が決まると有理型関数の零点や極の位数が決まったりするんですか?
897:132人目の素数さん
19/11/27 11:55:55.30 .net
ふと思ったんですが、πの無限小数展開において、任意の有限な自然数列がどこかに一連の並びで現れると聞いたことがありますが、
その逆からは実数についてどこまでのことが言えますか?
つまり、実数xについて任意の有限な自然数列がxの無限小数展開のどこかに一連の並びで現れるならばそのxの持つ性質って何ですか?
898:132人目の素数さん
19/11/27 11:57:07.90 .net
訂正
有限な自然数列→自然数の有限列
899:132人目の素数さん
19/11/27 17:32:15 9uN+juHp.net
みなさんよく >>836 の意味が分かります
900:ね 「微分を行列で書く」と書いてあるからヤコビアンのことかと思ったんですが、無限次元ではないので違う話ですね
901:132人目の素数さん
19/11/27 17:36:30 W3qDnCai.net
>>864
微分を行列で書くからヤコビアンを連想する方が無理
902:132人目の素数さん
19/11/27 17:48:34.88 9uN+juHp.net
私もトーラスについて気になることがあるので質問します
正方形からトーラスを商位相空間として作るときに、まず上の辺と下の辺を同一視して円柱を作り、
次に円柱の一方の円と他方の円を同一視してトーラスにしますが、この接着を実現する連続的な変形には少なくとも二種類ありますよね。
円柱の外側でくっつける方法と、内側でくっつける方法。
もっと言うと、くっつける前に1回捻ってからくっつけるとか、2回捻ってからくっつけるとかもありますよね。
そこで質問なんですが、くっつけ方を区別して「本質的にいくつのくっつけ方があるのか?」を考える研究分野とかあるんでしょうか?
903:132人目の素数さん
19/11/27 17:50:38.65 W3qDnCai.net
>>866
それユークリッド空間の中で考えようとしてるのね?
埋め込みで検索
904:132人目の素数さん
19/11/27 17:51:45 W3qDnCai.net
あとノットもか
905:132人目の素数さん
19/11/27 17:52:23 9uN+juHp.net
>>865
まああなたとは脳のデータベース構造が違うんでしょうね
私からしたら「微分」と「行列」のキーワードでヤコビアン以外に何があるんだと言う感じですが
906:132人目の素数さん
19/11/27 17:53:07 9uN+juHp.net
>>867
迅速な回答ありがとうございます
907:132人目の素数さん
19/11/27 17:57:50 +nj+wwKX.net
フーリエ展開とかヒルベルト空間知ってるかどうかじゃないですかね
そんな大した話ではないんですよ
908:132人目の素数さん
19/11/27 19:30:09 t5XZDU73.net
普通に表現行列しか思い浮かばなかったわ
909:132人目の素数さん
19/11/27 19:38:25 .net
中身の詰まった円柱を湾曲させてアルファベットのCのような形にして、その円柱の上面と下面を接着させるとよく知られた穴あきドーナツが出来ますが、
そうではなくて、円柱を太らせて縮めて、上面と下面を円柱の内側にめり込ませるようにして、上面と下面を接着させると穴の閉じたドーナツが出来ます
同じ連続的な変形なのに出来上がった物が違うので位相的な違いがあると思うんですが、これは数学的にはどういう風に議論されてるんですか?
910:132人目の素数さん
19/11/27 19:47:48 +nj+wwKX.net
どっちのドーナツ作る過程も連続だけど同相ではないですよね
だから別に穴が違くなってもいいんじゃないですか?
そもそも元の筒には穴ないですよね
911:132人目の素数さん
19/11/27 19:57:56 hGn3pwUt.net
表面は同相です。
912:132人目の素数さん
19/11/27 20:01:35 .net
>>874
だから、中身の詰まった円柱って言ったんです
913:132人目の素数さん
19/11/27 20:11:00.74 +nj+wwKX.net
中身詰まってても同じだと思いますけど
914:132人目の素数さん
19/11/27 20:54:03.01 hGn3pwUt.net
>>877中身が詰まったトーラスはソリッドトーラスと言います。
片方つまってて片方つまってない、つまり片方ソリッドトーラスで片方トーラスならもちろん同相ではない。
しかし作る過程がどうあれ表面は同相、出来上がったものに詰め物をしたものも同相。その二つの作り方ならどちらのドーラスも内側に詰め物をすればソリッドトーラス、外側に詰め物をすればソリッドトーラス-1点です。
915:132人目の素数さん
19/11/27 21:05:13.81 hGn3pwUt.net
あ、わかった。
そのトーラスのできたループのどっち側が潰れるかの話かな?
話簡単にするために無限遠に一点つけてS^3での話にすると、それは二つのソリッドトーラスを貼り付けてS^3を作る話しに行きます。
トーラス内の二つのループを共有点がちょうど一個になるように任意に選ぶ時、その片方の内側に円盤一個、もう片方の反対側に円盤一個を貼り付けて、できたS^2と同相な球面にD^3を貼り付けるとS^3ができます。
この方法でトーラスのS^3への埋め込み全体(のアンビエントアイソトピークラス)が全て実現されます。
最初のループの組みは互いに素である整数の組みの全体でパラメータ付されます
916:132人目の素数さん
19/11/27 2
917:2:25:06.78 ID:W3qDnCai.net
918:132人目の素数さん
19/11/27 22:28:00.81 isuQeS+i.net
紙コップと紙皿は同相ですか?
919:132人目の素数さん
19/11/27 22:29:35.38 W3qDnCai.net
>>873
位相的には同じ
920:132人目の素数さん
19/11/27 22:42:12.98 RK6owFXf.net
>.880
微分作用素のほうが普通の感覚で筆頭に上がると思うわ。
ヤコビアンは一応多変数になってから出てくる話だし。(まあ複素数の時点で形式的には多変数突入済みだけど・・・)
921:132人目の素数さん
19/11/28 01:33:30.93 eNjo0lOV.net
同じことを何度言ってもカウント1だから頑張らなくていいよ
>>880にだけコメント
ヤコビアンというのは多様体の写像f:M→Nの点pにおける「微分」Tpf:TpM→Tf(p)Nを
TpMとTf(p)Nに基底をとることによって「行列で表した」もの
「線形写像は基底を指定すれば行列で表せる」
922:132人目の素数さん
19/11/28 02:05:55.89 LROrr2RI.net
>>884
>私からしたら「微分」と「行列」のキーワードでヤコビアン以外に何があるんだと言う感じですが
と捉えることへの批判に対してなんのコメントにもなってないけど
923:132人目の素数さん
19/11/28 02:07:46.56 B5rRG7SA.net
>>884
それヤコビ行列な
でそれは微分形式の変換に関するもので
そもそもの質問をちゃんと読んだとは思えないね
924:132人目の素数さん
19/11/28 02:09:14.86 njguuqUt.net
微分(derivative)と微分作用素(derivation)の区別をしよう
微分Dfを行列で表すんじゃなくて微分作用素Dそのものを行列で表せるか、という話でしょ
線形写像と行列の対応はふつう有限次元の場合の話(そもそも線形代数では無限次元行列なんてものは扱わないし定義すらしない)
実際、無限次元だと行列で書けないような線形写像は存在する
925:132人目の素数さん
19/11/28 02:11:29.14 eNjo0lOV.net
この議論続けたいですか?どうでもよくないですか?「大学学部レベル質問スレ」ですよ?
まあ私は去りますので好きに言っててください
926:132人目の素数さん
19/11/28 02:11:30.27 B5rRG7SA.net
そもそも多様体の微分可能写像fについての微分dfを聞いているのでは無いと認識しなくてはダメだよ
927:132人目の素数さん
19/11/28 02:16:47.97 LROrr2RI.net
>>888
どうでもいいなら最初から口出さなけりゃ馬鹿晒さんですんだのに
928:132人目の素数さん
19/11/28 02:21:44 njguuqUt.net
>>887
>実際、無限次元だと行列で書けないような線形写像は存在する
ごめん大嘘ぶっこいたかも
ただ、任意の無限次元行列は必ずしも線形写像ではないのは確かに言える(基底の定義から有限和に限られるから各行ベクトルは有限個を除いてすべて0でないといけない)
929:132人目の素数さん
19/11/28 02:31:25 eNjo0lOV.net
レス乞食ですか。馬鹿と言って攻撃すれば私が感情的になって何かしら反応すると思ったんでしょう。反応しますけどね。
質問者「(前略)微分って無限次元の行列で書けますか?」
私「"微分を行列で書く"と言えばTfの行列表示だけど無限次元だから違うだろうなぁ、どういう意味だろ。何を言ってるのか分からないなぁ」
↑これってあなたにとってそんなに興味深いですか?
あと「私からしたら~という感じですが」という個人の心理に関する言明は論破困難ですよ
こんなことを議論しても意味なくないですか?あなたはこの議論で何が得られるんですか?
930:132人目の素数さん
19/11/28 02:54:25.10 njguuqUt.net
>>892
>私「"微分を行列で書く"と言えばTfの行列表示だけど
そうか?
そのfはどこから来たの?
931:132人目の素数さん
19/11/28 02:55:59.04 7jPkdmxI.net
基底は有限個しかないとか、微分は多様体の意味しかないとか、フーリエ展開すら知らないとしか思えないようなレベルの低いレスが続きますね
932:132人目の素数さん
19/11/28 03:16:04.55 eNjo0lOV.net
わざと隙を作って待
933:ってても突いてあげなーい この話終わり ↓ここから質問スレ再開
934:132人目の素数さん
19/11/28 05:50:28.29 lQHpr6xw.net
無限から無限を引いたら0になるのですか?
無限を無限で割ったら1になるのですか?
935:132人目の素数さん
19/11/28 13:01:26.65 hv8vXblR.net
>>895は突っ込みにまともに答えられないのに偉そうにだけはしたいから、自分が言うだけ言ったとこで話を終わりにしたいんだよ
みんなその気持ち分かってやれよ
936:132人目の素数さん
19/11/28 13:39:12.48 7JTbbbfj.net
とっくに回答されてるのは放っとけ
937:132人目の素数さん
19/11/28 20:43:24.38 j618/XLd.net
>>894
お前には一体何が見えているんだ
基底は有限個とか微分は多様体の意味しかないとか、どこにそんなことが書かれているというのか
938:132人目の素数さん
19/11/28 22:19:26 JgVFfrLr.net
>>894と>>899に全部書いてあるで
939:132人目の素数さん
19/11/28 22:42:20 lvt0VL8R.net
4225
しろ@hu_corocoro 11月27日
苦節6ヶ月、初満点&一等賞です!
URLリンク(twitter.com)
(deleted an unsolicited ad)
940:132人目の素数さん
19/11/30 00:14:47.88 mKZMlDym.net
オレのち〇こはR^3に埋め込めますか
941:132人目の素数さん
19/11/30 15:00:06.86 pBFAU41i.net
射影極限がよくわからないです
URLリンク(ja.wikipedia.org)
に書いてある例を見ると、射影極限はA_iたちの直積の部分集合となっています
「Q上のコーシー列の極限は、コーシー列の同値類として与えられる」
という場合には、同値類を同じとみなしていることで、コーシー列の途中の値じゃなく極限を見ているんだというイメージがわきますが
上の射影極限の例の場合にはA_iたちの直積の要素そのものが射影極限の要素になっていて、
何かの列の極限的な性質というよりは途中の値も全部見ているように思えます
あまり極限という言葉に捉われないほうがいいのでしょうか?
また、できれば射影極限のこころを簡単な例で教えて貰えると嬉しいです
942:132人目の素数さん
19/11/30 15:18:52.66 QzK7XxzN.net
射影極限は圏論的な極限であって、数列や関数の極限を抽象化したものではない
まあ知らないだけで関係あるのかもしれない
要素の繋がりかたでイメージしたいなら有向集合のイメージそのまま持ってくればいいと思うよ
943:132人目の素数さん
19/11/30 18:54:16 rHu7NCo9.net
「こころ」なら『コホモロジーのこころ』でも読んどけって感じだが
簡単な例なら、「高々n次の多項式の環」のn→∞への帰納極限が多項式環、射影極限が形式冪級数環
944:132人目の素数さん
19/11/30 22:41:38.76 IHqf1eI0.net
>>904
>まあ知らないだけで関係あるのかもしれない
テイラー展開は機能帰納極限と捉えるより
射影極限だよなあ
945:132人目の素数さん
19/12/01 00:19:39.32 eG0wvwL4.net
集合の極限を集合内の極限で例えてもなー
946:132人目の素数さん
19/12/01 01:29:59 W6WTNRgv.net
リーマン球にするための一点コンパクト化の無限遠点側から眺めた極限概念が射影極限って感じ。
947:132人目の素数さん
19/12/01 04:29:21.71 EdBQbHjP.net
>>907
あんま詳しくはないけど集合の要素も全部集合とするのはメジャーだと思うし
その場合「集合の極限を集合内の極限で例える」のは何ら変じゃないやん
948:132人目の素数さん
19/12/01 14:18:42 eG0wvwL4.net
集合内の関係に相当するものがあるのか?
949:132人目の素数さん
19/12/01 21:51:08.29 XYunrNrA.net
limとcolimでlimの方が数列のlimの意味に近いんだよな
950:132人目の素数さん
19/12/02 03:21:43.16 s84S5TDB.net
スレチかも知れないんですが
ルベーグ積分と偏微分方程式の�
951:ウ科書て何がオススメですか? 自分は工学系で独学で勉強したいと思いました
952:132人目の素数さん
19/12/02 11:35:29 403w5qxA.net
任意の有限群に対して同型になるようなガロア群の存在は言えますか?
953:132人目の素数さん
19/12/02 12:15:43.73 SuwO3FwH.net
体と拡大体を自由に選んでいいなら言える
954:132人目の素数さん
19/12/02 12:51:23.66 403w5qxA.net
>>914
自由に選んで大丈夫です
955:132人目の素数さん
19/12/02 13:06:09.17 N130gvnu.net
逆問題やね
確か複素有理関数体C(x)上の拡大体で構成できたような……
Konstruktive Galoistheorieの一章に抽象リーマン面を用いたある種の有理型関数体として構成する方法が書かれてたと思う、うろ覚えだけど
956:132人目の素数さん
19/12/02 13:09:41.76 LjXqMAi1.net
G⊂Snとみなせるnをとる。(eg n=#G)
kを任意の体、L=k(x1,‥,xn)としてSnをLに文字の入れ替えで作用させる。
K={x∈L | σ(x)=x (∀σ∈G)}
のときGal(L/K)=G。
957:132人目の素数さん
19/12/02 15:38:23 pn+1vrFj.net
>>913
有限群はすべて大将軍の部分群だって分かったら当たり前
958:132人目の素数さん
19/12/03 01:46:36.44 P24VXCRV.net
距離関数がwell-definedだと示す際にこれを確かめなければいけないという項目はあるのでしょうか
具体的にはsup距離やbounded Lipschitz距離です
959:132人目の素数さん
19/12/03 11:23:06.41 2AjPXpKA.net
>>916-918
ありがとうございます
ちなみに体が自由に選べない場合でもこの主張は言えますか?
拡大体の方は有限群を決めたあとで自由に選べます
960:132人目の素数さん
19/12/03 11:30:59.11 Y/i1CsBl.net
>>928
ガロアの逆問題。未解決。
961:132人目の素数さん
19/12/03 11:57:53.24 2AjPXpKA.net
あ、そっかぁ……
962:132人目の素数さん
19/12/03 14:05:54.13 S3c+pEzT.net
>>918
無限群も同じ証明が使えるんじゃないか
963:132人目の素数さん
19/12/03 15:08:57.95 bQoQhrFK.net
>>919
正定値性 : d(x, y) ≥ 0
対称性 : d(x, y) = d(y, x),
三角不等式 : d(x, y) + d(y, z) ≥ d(x, z)
それと x = y ⇔ d(x, y) = 0
を併せて距離の公理と言う
・質問する前に教科書や参考書を読むなりググるなりして
次から教科書くらい呼んでから質問すること
964:132人目の素数さん
19/12/03 20:19:12.03 GpVZW4aT.net
つい先日、一様収束位相って物を学びました
距離空間の完備性を一様収束位相で特徴付けることが出来ます。
一方、完備性は同相だけでは捉えきることが出来ず、一様同相と言う概念が必要です。
だったら、もう今後は普通の位相(開集合系)なんて使わず、一様収束位相で位相空間論を語った方がいいんじゃないんですかね?
965:132人目の素数さん
19/12/03 22:03:34.68 tzeHrqUz.net
>>925
説明してよ
966:132人目の素数さん
19/12/03 22:15:25.45 YUQo8fPx.net
>>925
そのテーマで本を書いたらどうか
967:132人目の素数さん
19/12/03 23:02:08.80 tzeHrqUz.net
>>925
説明できないのか
アホかな?
968:132人目の素数さん
19/12/04 01:26:01 SKQ6XNhx.net
>>924
そういう意味じゃないです
そもそも定義がwell-definedであると言いたいという意味です
969:132人目の素数さん
19/12/04 02:16:47.34 rL2x0mlV.net
意味が違うのはわからんけど実際に同じ距離の点同士が同じ値取ることや
その距離関数が本当に実数値取ってること調べればいいのでは
sup距離なら有界性の議論とか
970:132人目の素数さん
19/12/04 03:29:33 tC1T8xC3.net
>>928
俺は健常者に質問してるんで、お前みたいな障害者は黙っとけ
一々障害者の相手してストレス溜めたくないから。な?
971:132人目の素数さん
19/12/04 07:57:57.76 FUBuAzoR.net
>>931
質問するなら説明が必要だって分かってないみたいね
972:132人目の素数さん
19/12/04 07:59:39.63 FUBuAzoR.net
位相概念の変更を迫るほどのことをしているという覚悟
いや
自覚すら無いらしい
下らない
973:132人目の素数さん
19/12/04 09:43:21.39 9+N8hGcM.net
位相概念の変革といえば、最近流行りの(?)pointless topologyってどうなの?
なんかメリットあるのかな
974:132人目の素数さん
19/12/04 14:18:59 E0Ln+aNw.net
別の視点を持てば別のことに気づく
975:132人目の素数さん
19/12/04 14:52:49.41 OoNsV6AK.net
ここは思いつきを書きなぐる日記帳だぞ
莫迦は無視しとけ
976:132人目の素数さん
19/12/05 06:18:43 XeH0JX1k.net
>>920これ体を自由に動かせるなら反例出ませんかね
ガロアの逆問題だとQの場合なので他だと反例あるのではと悩んでいるのですが
977:132人目の素数さん
19/12/05 06:21:31 XeH0JX1k.net
ああ自由に動かして最初に固定するって意味です
978:132人目の素数さん
19/12/05 08:35:32.15 Do08ylXj.net
下の体固定して出てこない有限群があるやつ探せなら代数閉体とれば終わりじゃん。
979:132人目の素数さん
19/12/06 23:42:11 pUy89w/Z.net
自然変換の自分の理解が合ってるか不安なので質問したいんですが
関手F:圏C→圏D と 関手G:圏D→D
があったら、F→G°F の自然変換が作れる
逆に、上のようなG、Fを用いてG°Fのような形では書けない自然変換がある
という理解は合ってますか?
980:132人目の素数さん
19/12/07 07:37:37.22 qIKSSiPZ.net
>>940
合ってる
981:132人目の素数さん
19/12/07 11:40:16.36 oeVm7VZc.net
>>940
> 関手F:圏C→圏D と 関手G:圏D→D
> があったら、F→G°F の自然変換が作れる
こんなのどうやって作るん?
982:132人目の素数さん
19/12/07 13:08:47.30 AZfyF+X9.net
見た通りじゃね?
983:132人目の素数さん
19/12/07 13:14:56.88 udD16bRY.net
見た通り?
984:132人目の素数さん
19/12/08 01:30:07.20 2H32q2H8.net
>>941
ありがとうございます
985:132人目の素数さん
19/12/08 01:34:59.94 dWzRrcj2.net
>>945
感謝してどうする
986:132人目の素数さん
19/12/08 14:09:52 aTSeeV7e.net
感謝せんでどうする
987:132人目の素数さん
19/12/08 18:34:34.13 msSLpglG.net
位相の概念を非専門的に説明する時って「点の近さ」云々って言われますけど、近さって言うと違くないですか?
距離空間ならまあわかりますけど、位相空間で「近さ」ってどういう意味ですか?
988:132人目の素数さん
19/12/08 18:34:34.12 msSLpglG.net
位相の概念を非専門的に説明する時って「点の近さ」云々って言われますけど、近さって言うと違くないですか?
距離空間ならまあわかりますけど、位相空間で「近さ」ってどういう意味ですか?
989:132人目の素数さん
19/12/08 18:35:15.87 msSLpglG.net
分身スマソ
990:132人目の素数さん
19/12/08 18:36:47.07 /jkn3pxq.net
位相空間の最も基本的な例が距離空間だからそういう説明になるんだと思います
グループ分け、とか、繋がり方、とかいう説明の方が距離との区別もついていいと思うんですけどね
991:132人目の素数さん
19/12/08 18:43:09.30 jo+guGcg.net
近似の厳密化の産物に収束をはじめとしていろいろがあって
収束とか距離とかの厳密化の産物が位相なので
位相自体がそういう系譜にあるから同じような述語が使われるのはおかしくない
ちなみに今考えた
992:132人目の素数さん
19/12/08 18:45:49.40 GND5Qdtj.net
開集合の点を取れるかどうか
開集合の点に限りなく近いっていうのが近傍じゃなかったかな
忘れたけど
993:132人目の素数さん
19/12/09 00:27:44.46 VMCtpDJ8.net
よく徒歩とバスと電車で例えられる
994:132人目の素数さん
19/12/09 15:50:57.41 j9YNADmf.net
位相の概念は「くっついてる」だろ
995:132人目の素数さん
19/12/09 18:11:45.66 zZL//ubZ.net
位相は他のもので例えられない
位相としか言いようがない
996:132人目の素数さん
19/12/09 20:29:24 5iZ4BmoP.net
まあ個人的には開集合
997:論とでも呼べばいいのにとは思う。
998:132人目の素数さん
19/12/09 22:09:12.63 Md36M1bf.net
近傍系で定義するなら近傍系論か?
999:132人目の素数さん
19/12/09 22:46:59.39 9/GvMvqf.net
>>958
それだな
1000:132人目の素数さん
19/12/10 00:47:24.66 XKKww+Hq.net
大同二年開基
境相論
1001:132人目の素数さん
19/12/10 00:48:26.08 XKKww+Hq.net
同倫コボルダンス
三辻の女王ヘカーテ
1002:132人目の素数さん
19/12/10 00:57:26.69 LWL+Dzup.net
URLリンク(ja.wikipedia.org)
の
>常に射 g : A → Yが一意に存在して、次の図を可換にする。
って、次の図を可換にする射 g : A → Yが一つだけある(次の図を可換にしない射 g : A → Yは他にあってもいい)ってことでいいですよね?
1003:132人目の素数さん
19/12/10 01:01:07 XKKww+Hq.net
余同倫のコボルトの方がいいか。
1004:132人目の素数さん
19/12/10 07:26:09 i1OucByx.net
>>962
はい
1005:132人目の素数さん
19/12/10 12:56:43.54 Fr6GXl1c.net
>>958
閉包論もあるぞ
1006:132人目の素数さん
19/12/10 13:21:41.82 YF04UXDx.net
杉浦光夫著『解析入門I』を読んでいます。
ダルブーの定理の証明ですが、p.215に
「(3.9)により 0 ≦ n_k ≦ n である。」
と書いてあります。これって間違っていませんか?
「(3.9)により 0 ≦ n_k ≦ 1 である。」
が正しいと思いますが、どうですか?
1007:132人目の素数さん
19/12/10 23:27:51 BH42nSPz.net
C*環やバナッハ環について知りたいんですが、いい教科書ありませんか?
特にストーン・ワイエルシュトラスの定理の証明を知りたいです。
1008:132人目の素数さん
19/12/10 23:37:48 sZlY0Mz1.net
Rudin
1009:132人目の素数さん
19/12/11 11:21:18.55 Z15fXRNs.net
>>967
松坂和夫著『解析入門中』に書いてあります。Rudinのパクリですが。
1010:132人目の素数さん
19/12/11 15:11:23 cka3bh8w.net
>>968 >>969
ありがとうございます
1011:132人目の素数さん
19/12/11 19:42:57.53 RCvw2MiZ.net
>>942
作れるわけ内やン
1012:132人目の素数さん
19/12/13 21:58:22.47 mNQnatKA.net
位相空間のコンパクト化って何に使いますか?
1013:132人目の素数さん
19/12/13 22:06:32.20 4/NDzV+i.net
まず白粉を塗ります
1014:132人目の素数さん
19/12/13 23:45:35.74 zT4YwtUL.net
次に口紅を塗ります
1015:132人目の素数さん
19/12/14 14:19:41.87 mHXx5gWj.net
コンパクト化を使って証明する定理とかないんですか?
コンパクト化するだけで満足ですか?
1016:132人目の素数さん
19/12/14 16:01:01.72 MgXfXL6o.net
劣等感かよ
1017:132人目の素数さん
19/12/15 02:36:23.33 zuwUNRic.net
URLリンク(www.math.s.chiba-u.ac.jp)
の(6.4)で
>自然変換φ:F→Gが同型,あるいはφ:F→Gが自然同型(natural isomorphism)であるとは,
>φがHom(C,C′)における同型射であることである。
>これは,φ:F→Gが自然変換で,かつ任意のX∈Cに対しφ_X:F(X)→G(X)が同型であることとも言い換えられる。
とありますが、2行目⇒3行目はわかるんですが、3行目⇒2行目が何で言えるのかわかりません。
3行目が成り立ってても、あるX,Y∈Cに対してF(X)≠F(Y)だけどG(X)=G(Y)のような場合、φがHom(C,C′)における同型射にはならない気がします。
1018:132人目の素数さん
19/12/15 08:03:06 qHnqyGR5.net
>>977
>F(X)≠F(Y)だけどG(X)=G(Y)
関係ない
1019:132人目の素数さん
19/12/15 08:15:26 zuwUNRic.net
>>978
ああ、
ψ_X:G(X)=G(Y)→F(X)
ψ_Y:G(X)=G(Y)→F(Y)
ってすればいいってことですか
G(X)=G(Y)から出る射がF(X)かF(Y)どっちかしか向けないと勘違いしてました
ありがとうございます
1020:132人目の素数さん
19/12/15 09:43:17.18 qHnqyGR5.net
>>979
>ってすればいいってことですか
意味分からん
Φ_Xが同型射なんだから
Φ_Xの逆をψ_Xとしたら良いだけ
1021:132人目の素数さん
19/12/15 10:19:37.12 IVCirgoz.net
コンパクト化の質問だれも分かりませんか?
まあ、5chのレベルを超えてるような気はしてましたが・・・
コンパクト化を応用できる>>>>コンパクト化を本で読んで知っている
1022:132人目の素数さん
19/12/15 12:16:35 qHnqyGR5.net
知ったら良いだけで
特に目的化して考えないからでは?
2次方程式の解を目的化して考えていたのは遙か昔で
今でもそれに拘るのは入試数学だけみたいな感じか
1023:132人目の素数さん
19/12/15 16:15:16.60 azVZV8Ai.net
普通は証明の前提だからな
都合の良い性質を持たせるためにコンパクト化しとくだけだから
コンパクト化すれば満足に決まっとる
1024:132人目の素数さん
19/12/15 19:38:22.83 gy64Vhcn.net
コンパクトじゃない空間を調べる時にコンパクト空間で成り立つ定理を使うためにコンパクト化が有用ということですね。
1025:132人目の素数さん
19/12/15 19:46:12.33 J3Z8uEDs.net
m≠n のとき R^m と R^n が同相ではない、とかが簡単な例
1026:132人目の素数さん
19/12/15 20:10:48.99 CQci/knp.net
>>980
それって>>979と同じですよね?
1027:132人目の素数さん
19/12/15 21:20:09.41 qHnqyGR5.net
>>986
なんで?>>979はψの定義の仕方ではなく
意味不明な射の向くオブジェクトにしか言及してないけど?
1028:132人目の素数さん
19/12/15 21:40:45.38 qHnqyGR5.net
あー
自然変換はC'のオブジェクトに対して決めるって誤解していたって書いたのが>>979か
誤解の内容が分かったから>>987の「意味不明な」は撤回
すまんかった
1029:132人目の素数さん
19/12/16 13:16:59.01 36sQLssi.net
>>984
聞いた事ねーな
1030:132人目の素数さん
19/12/16 14:33:11.45 D1jVu1XA.net
>>989
ヒント
リーマン球面
1031:132人目の素数さん
19/12/17 00:55:08.43 pGVlEnoV.net
例になっとらん
1032:132人目の素数さん
19/12/20 02:12:53 yiLw1Jz8.net
1300
しろ@huwa_cororon 11月27日
苦節6ヶ月、初満点&一等賞です!
URLリンク(twitter.com)
(deleted an unsolicited ad)
1033:132人目の素数さん
19/12/29 07:29:12.03 icoiQDL9.net
あげ
1034:132人目の素数さん
19/12/29 08:03:47.46 j8BPQeX0.net
これは次スレない?
1035:132人目の素数さん
19/12/30 23:27:55.73 cQsO64ud.net
3次方程式、4次方程式の解の公式って、調べてもアルゴリズムや議論を見せつけるものが大半で、
「これが解の公式そのものだ!」って2次方程式の解の公式みたいに一目で見せてるものってまず見かけないのは何でですか?
1036:132人目の素数さん
19/12/30 23:56:17.50 AFbw2Tfa.net
>>995
一目じゃないから
1037:132人目の素数さん
19/12/31 12:50:18.48 it/LiQLI.net
>>995
ガロワ群は可解ではあるが巡回群ではないから
1038:132人目の素数さん
19/12/31 14:30:00.60 3lXvn8Be.net
>>995
一目で見せると分かりにくいから
自分で書いてみると分かる
1039:132人目の素数さん
19/12/31 14:49:51.84 ASiBPYNx.net
次スレ立てました。
スレリンク(math板)
1040:132人目の素数さん
19/12/31 22:19:37.21 nylmZ6Sr.net
俺が1000だ!
1041:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 532日 7時間 40分 3秒
1042:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています