18/09/15 00:48:02.48 YyuEqBCq.net
松本深志高校出身の山田洋平くん。
毎日ゲームばかりやってたのに、現役で東京理科大学理学部応用数学科に受かってすごいな。
鉄道も趣味らしい。
眼鏡しててピースしてる人が彼。
まさか推薦ではないよね?
URLリンク(twitter.com)
URLリンク(twitter.com)
URLリンク(twitter.com)
URLリンク(twitter.com)
URLリンク(twitter.com)
URLリンク(twitter.com)
URLリンク(twitter.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
(deleted an unsolicited ad)
103:132人目の素数さん
18/09/16 02:46:21.06 y
104:OmOmGvY.net
105:132人目の素数さん
18/09/21 01:57:20.67 gdxKueQW.net
群論で正規化群、中心化群というのがありますが、どういう意図でこの名前がついているんですか?
定義が正規部分群や中心と似ているとは思いますが
何かが「正規化」されたり「中心化」されたりして何かの群の正規部分群や中心になるんですか?
それとも「××化」というのは別の意味で用いられているのでしょうか?
106:132人目の素数さん
18/09/21 14:03:46.91 ubQRlnLb.net
Gの中心化群はGを中心とする群だし
Gの正規化群はGを正規部分群とする群だ
107:132人目の素数さん
18/09/22 18:21:36.92 id0QzKeD.net
>>104
ありがとうございます
中心化群について、Gの中心化群Hは必ずしもG全体を含まないと思いますが
G∩HがHの中心という感じでしょうか
正規化群の方はおっしゃるとおりですね、言われると気づかなかったのが恥ずかしいです
108:132人目の素数さん
18/09/24 10:13:54.18 VHuNBiOT.net
日本の数学の人はなぜリー代数をかたくなにリー環と言い続けるのですか?
英語でもLie algebraですよね?
109:132人目の素数さん
18/09/24 11:54:12.21 r7YoMRD8.net
リー(多元)環あるいはリー(線型)環
だからだよ
110:132人目の素数さん
18/09/24 12:56:44.41 PvI9iGzA.net
多元環の翻訳が algebra
111:132人目の素数さん
18/09/24 13:07:12.43 n6vsIunu.net
フェーズ→位相
トポロジー→位相
112:132人目の素数さん
18/09/24 14:10:41.57 dNvxq8gN.net
ゼリー代数とニリー環入門 山田太郎 大阪書店 近日発売
113:132人目の素数さん
18/09/24 14:56:47.05 r7YoMRD8.net
>>106
和と積とスカラー倍が上手く行ってる代数系を表すのに
algebraって言う名称も大概酷いのに直訳して代数って呼ぶのはもっと酷い
という気分は多分にある
たぶんね
114:132人目の素数さん
18/09/24 15:42:03.97 meMcr2MS.net
別に酷くない。一般代数のことだから。
115:132人目の素数さん
18/09/24 15:44:28.27 meMcr2MS.net
てか、群でも代数て言うし。
116:132人目の素数さん
18/09/24 17:54:23.90 r7YoMRD8.net
もう自己矛盾してるw
117:132人目の素数さん
18/09/24 19:06:07.56 w8/YZGQK.net
リー(結合)代数
118:132人目の素数さん
18/09/24 22:58:39.42 meMcr2MS.net
いくつかのn項演算が与えられている集合のことを代数と言うんじゃなかったっけ
119:132人目の素数さん
18/09/24 23:49:57.54 w8/YZGQK.net
もしかして:代数系
120:132人目の素数さん
18/09/25 05:07:16.74 fhBtBKjM.net
環上の代数を他玄関と言うアホジャップの奇習ですねわかります
121:132人目の素数さん
18/09/25 13:37:22.20 QyVcw+aD.net
また自分で情けないところをバラして
122:132人目の素数さん
18/09/27 01:17:18.08 1eFmW67p.net
英語の辞書にrequirementの意味が必要条件と書いてあるのですがこれは数学用語ではないですよね?
necessary conditionがよく使われていると思うのですがrequirmentを使うこともあるのでしょうか
123:132人目の素数さん
18/09/29 13:50:31.82 kW00hQb+.net
高校数学用語って数学用語なのか?
124:132人目の素数さん
18/09/30 15:19:35.91 gWzrRGU6.net
有限拡大M/Kで中間体が有限個のとき、拡大は単純拡大となりM=K(α)となることを
示したい。
次数[K(α):k]が最大になるようにαを選ぶ。β∈M-K(α)でK(α+kβ),k∈KでkをK全体で
動かして考えて、結局、そのようなβは存在しないことを示す。
どのようなk∈Kを選んでβが存在しないことを証明すればよいのでしょうか?
お願いします。
125:132人目の素数さん
18/09/30 20:09:05.12 gWzrRGU6.net
任意のk∈Kで
[K(α+kβ):K]≦[K(α):K]
として矛盾を導くのでしょうか?
126:132人目の素数さん
18/10/01 04:08:05.65 2NX15USF.net
>>122,123
そのヒントの使い方はわかんないけど証明はできた。
ーーーー
L/K が有限拡大で中間体は有限個とする。
Kが有限体ならL/Kは分離拡大ゆえ成立。
(一般に分離拡大は単項拡大。)
Kが無限体とする。
Mi (i:1~n) を単項拡大である中間体の全体とする。
このとき L = ∪ Mi である。
Mi がすべて L の真の部分体とすると、Kベクトル空間 L がその真の部分空間の有限和で表されることになり矛盾する。
(一般に無限体係数のAffie空間がその真の超平面の有限個で被覆されることはない。)
よっていずれかのMiがLに一致せねばならない。
127:132人目の素数さん
18/10/01 05:21:25.49 ESSRQuIX.net
>>124
ありがとうございます。
128:132人目の素数さん
18/10/01 05:46:05.14 ESSRQuIX.net
まだ、よく理解できていませんが、考慮します。
129:132人目の素数さん
18/10/01 06:13:15.47 ESSRQuIX.net
>>124
L = ∪ Mi
は、どうしてそう言えるのですか?
130:132人目の素数さん
18/10/01 06:21:43.78 ESSRQuIX.net
∪は単に集合としての和と、とらえました。
131:132人目の素数さん
18/10/01 06:27:12.58 NxzBvXyb.net
>>127,128
だってLの任意の元xをとるときxは単項拡大K(x)に含まれるから。
132:132人目の素数さん
18/10/01 07:50:26.09 ESSRQuIX.net
>>129
なるほど、すみません。わかりました。
133:132人目の素数さん
18/10/01 13:18:39.22 ZJNI1hU9.net
見事やなー
134:122
18/10/02 22:20:11.19 wZGpXw1O.net
可換体論の本を購入して読んで参考にしました。
Kが無限体の場合、k≠k'であればK(α+kβ)≠K(α+k'β)
∵K(α+kβ)=K(α+k'β)とすると(α+kβ)-(α+k'β)=(k-k')β∈K(α+kβ)。
β∈K(α+kβ)∴α∈K(α+kβ)
K(α+kβ)=K(α,β)となり[K(α+kβ):K]>[K(α):K]となりαの選び方に矛盾する。
よって中間体K(α+kβ)は無限に存在することになる。
中間体は有限個ゆえ、そのようはβは存在しない。
これで良いですか。
135:132人目の素数さん
18/10/02 22:42:27.90 9FuHmcO+.net
>>132
> 可換体論の本を購入して読んで参考にしました。
> Kが無限体の場合、k≠k'であればK(α+kβ)≠K(α+k'β)
こんなの成立しません。
例えばQ(√2+ 5√3)=Q( √2+ 7√3)= Q( √2,√3) 。
一般にα、βがK上分離的でkが集合
{(α1-α2)/(β1-β2) | αi、βiはα、βと共役}
に含まれないとき K(α+kβ)= K(α, β)。
136:122
18/10/02 22:53:02.68 wZGpXw1O.net
勉強不足ですいません。
でも、β∈M-K(α)という条件の下でもダメですか?
137:132人目の素数さん
18/10/02 22:55:02.82 idzdMmLx.net
√3はQ(√2)には含まれないですね
138:122
18/10/02 23:00:51.16 wZGpXw1O.net
そうですね。勉強不足でした。
標数0の時は完全体で分離的なので単純拡大。
標数p≠0の時をもっと厳密に述べなければいけませんでした。
出直してまいります。m(__)m
139:132人目の素数さん
18/10/02 23:12:53.46 71oVAUSl.net
>>136
もうわかってると思いますがQ(√2 + 5√3)には√2、√3入っちゃうんですよ。
昔のエロい人はエロい。
140:122
18/10/03 04:20:44.66 zrFn1BTA.net
>>137
そうですね。
ただ、[Q(√2 ):Q]=2。
[Q(√2+5√3):Q]=[Q(√2 ,√3):Q]=4なので、
√2 は 次数[K(α):k]が最大になるようなαではないですね。
間違ってたらごめんなさい。難しいです。(*_*)
141:132人目の素数さん
18/10/03 04:44:05.18 eo12GxF4.net
>>138
そうです。
もちろん最大にはなってはいません。
あくまで
> Kが無限体の場合、k≠k'であればK(α+kβ)≠K(α+k'β)
の反例です。
このα+kβで行く作戦はどちらか一方が分離的であれば
K(α+kβ) = K(α,β)
が成立するのでL/Kの最大分離中間体L/M/Kと最大純非分離中間体L/N/Kがそれぞれ単項拡大ならOKです。
分離の方はOKなので示すべきは
「N/Kが純非分離で中間体が有限⇒N/Kは単項拡大」
ですね。
頑張って下さい。
142:122
18/10/03 05:03:25.47 zrFn1BTA.net
>>139
ありがとうございます。m(__)m
頑張ります!!
143:132人目の素数さん
18/10/03 20:11:21.94 To4hq43M.net
ドラクエ10のプレイヤーから質問。
ドラクエ10でアイ�
144:eム収集(キラキラマラソン)していると、古いバージョンのゴミアイテムが沢山出てきて、 いちいち捨てるのも面倒なくらいです。ゲーム内の不要な情報は削除整理できないのでしょうか。 >つき [KA360-785] >2018/09/29 09:17 >[通報する] >提案から来ました。 >調査することによってどれだけのメリットがあるのですか? >持ち物整理は個人の自由ですよね? >あなたの言う調査にどれだけ手間がかかるか考えただけで分かるのにそれを運営にやらせるのですか? オンラインゲームでの、『全プレイヤーの道具と装備の使用率と投棄率』を調査するのは困難ですか?
145:132人目の素数さん
18/10/03 20:41:37.60 +wXuTMMd.net
パソコンでチョロチョロっといじるだけだと思いますよ
146:132人目の素数さん
18/10/03 22:51:55.18 OWw0nuyF.net
結合則が4個以上の元に対しても成り立つことの示し方を教えてください
147:132人目の素数さん
18/10/03 23:24:27.61 BbNsOg/G.net
添数集合(P_λ)_λ∈Λの積集合についてですが,
x∈∩ P_λ ⇔ ∃x ∀λ∈Λ x∈P_λ
λ∈Λ
は成り立ちますか?
∃xが無くても良いような気がして悩んでいます。
148:132人目の素数さん
18/10/03 23:26:45.67 gUbbW/W1.net
むしろあってはいけません
149:132人目の素数さん
18/10/03 23:28:26.45 BbNsOg/G.net
成り立つけれども書いてはいけない、という意味でしょうか?
150:132人目の素数さん
18/10/03 23:36:32.43 gUbbW/W1.net
書くと意味がまた変わってしまうということですね
151:132人目の素数さん
18/10/03 23:48:13.60 BbNsOg/G.net
なるほど,しかしまだ納得できないので考えてみます。ありがとうございました。
ちなみに右辺を量化子を使わずに左辺のように書くことは出来ますかね?
152:132人目の素数さん
18/10/04 00:08:22.67 tEpnaqCa.net
ある対象xが積集合に含まれるための条件を書こうとしてるんですよね?
「あるx~」なんて書いたら元の(左辺の)xは何だったんですか?ってことになりますよね
153:144
18/10/04 00:29:19.92 nEJjQ5QW.net
申し訳ありません,問題の一部を切り取って質問していたので不明瞭だったと思います。
問題は次です。
「fを写像とする。f(∩P_λ)⊂∩f(P_λ) を示せ。」
自分はとりあえず同値変形していきまして,
x∈f(∩P_λ)
⇔∃y∈∩P_λ,x=f(y)
⇔∃y ∀λ ,y∈P_λ x=f(y)
⇔∃x ∀λ x∈f(P_λ) で行き詰まり,質問しました。
この場合が
>ある対象xが積集合に含まれるための条件を書こうとしてるんですよね?
に当てはまるのか自分は判断出来ませんが,背景は上記の通りです。
154:144
18/10/04 00:33:39.75 nEJjQ5QW.net
あ,納得できました。
f(∩P_λ)に属する特定の元xを指定しているのですから>>149の通りですね。
ご親切にありがとうございました。
155:132人目の素数さん
18/10/05 13:16:41.67 xrxIsZGe.net
同値変形が無駄
156:132人目の素数さん
18/10/05 23:58:27.68 GQNkca1D.net
URLリンク(twitter.com)
この積分値の導出方法を教えてくだされ. (ツイート主と自分は無関係です)
∫[0,1]dx∫[0,1]dy∫[0,1]dz √(x^2+y^2+z^2) = ...
なんか解析的に解けるみたいです. 難易度不明.
(deleted an unsolicited ad)
157:132人目の素数さん
18/10/06 13:35:10.28 aB0oBIUj.net
まず積分範囲を1/6の 0≦x≦y≦z≦1 にしてから極座標にしてみたら?
158:132人目の素数さん
18/10/06 20:27:02.04 xGpxHK15.net
その積分境界をどう極座標表示したらいいのか分かりません.
159:132人目の素数さん
18/10/06 20:56:49.75 EzHLY8PD.net
わからないんですね
160:132人目の素数さん
18/10/07 13:27:01.45 xD25rJ
161:gz.net
162:132人目の素数さん
18/10/07 14:06:50.22 aJQk6bwy.net
∫∫∫ [0≦x≦y≦z≦1] r^3 dr dθ dψ
こんなんで計算が楽になるのん?... ぜんぜん先が見えないんですが。
163:132人目の素数さん
18/10/07 19:37:29.29 E2eTj7PJ.net
wolfram 先生にやってもらった。
∫[0,sec y] r^3 sin y dr = 1/4 sec^3y tan y
URLリンク(www.wolframalpha.com)
∫[0,atan sec x] 1/4 sec^3y tan y dy = 1/12 ((sec^2 x + 1)^(3/2)-1)
URLリンク(www.wolframalpha.com)(y)+tan(y),+y+from+0+to+atan(sec+x)
6∫[0,π/4]1/12 ((sec^2 x + 1)^(3/2)-1) dx = sqrt(3)/4 - π/24 + coth^(-1)(sqrt(3)) =
0.960591956455052959425107951393806360240976907545723987690...
URLリンク(www.wolframalpha.com)(-1+%2B+(1+%2B+sec%5E2(x))%5E(3%2F2))+,+x+from+0+to+pi%2F4
164:132人目の素数さん
18/10/07 21:19:20.84 vtlFnQU8.net
備忘録がわりに最後の積分。いわゆる”初等的だが煩雑”。
∫[0,π/4] ((sec^2 x + 1)^(3/2)-1) dx
=∫[0,1/√2] (2-x^2)^(3/2)/(1-x^2)^2 dx
=4∫[0,π/6] cos^4(t)/(1-√2 sin t)^2 dt
=(1/8)∫[0,π/6] ( 1/(sin t - 1/√2)^2 + 1/(sin t + 1/√2)^2 - 5√2/(sin t - 1/√2) + 5√2/(sin t + 1/√2) + 8 )dt
165:132人目の素数さん
18/10/08 07:36:07.11 AMRKLGDG.net
元ツイートに追記が.... 感謝感謝
166:132人目の素数さん
18/10/09 22:27:31.79 Q9kdbt5G.net
10万人に1人の発症率の病気があります。
平均年齢が80歳だと仮定して10万人の市に現在いる
患者の推定人数は1人になるのでしょうか?
167:132人目の素数さん
18/10/09 23:07:53.68 OI8jFpH4.net
はい
168:132人目の素数さん
18/10/13 16:06:05.16 gyagjTBG.net
微分可能性についてなんだが。
教科書なんかには
『両側微分可能かつ等しい⇒微分可能。
微分可能⇒連続』
って書いてあるけど、例えば
f(x)=x (x≠0)
f(x)=10 (x=0)
という関数について。点x=0について両側微分可能かつ等しいけど連続ではないよな。
『微分可能⇒連続』が間違いなのか。
『両側微分可能かつ等しい⇒微分可能』が間違いなのか。
どっち?教えてください
169:132人目の素数さん
18/10/13 16:06:12.73 Pxns/GWT.net
f(z)=u(x,y)+iv(x,y)がD上で正則関数ならば
bar{ f( bar{z} ) }が{z | bar{z} in D}上で正則関数になる
を示せ
ってあるんですが、正則であることを示す領域が変わっていてよくわからないです。
170:132人目の素数さん
18/10/13 16:23:31.47 QG1ji9oP.net
>>164
微分可能でないですし、連続でもないですよね、それ
171:132人目の素数さん
18/10/13 16:27:46.66 gyagjTBG.net
>>166
でも両側微分可能じゃないですか?
172:132人目の素数さん
18/10/13 16:31:58.25 QG1ji9oP.net
>>167
いいえ
両側微分可能の定義はなんですか?
173:132人目の素数さん
18/10/13 16:48:31.23 QG1ji9oP.net
>>165
Z*がDに入ってるんですから、f(z*)はz*のべき展開で表せますね
それの共役とればf(z*)*となり題意の関数が出てきます
さて、今、f(z*)*はべき展開で表せましたので、これは結局f(z*)*が正則であることを意味します
174:132人目の素数さん
18/10/13 16:49:28.62 gyagjTBG.net
『極限
(x→a-0)ならば f(x)-f(a)/x-a = A
(x→a+0)ならば f(x)-f(a)/x-a = A’
が存在すること』
ですか?
175:132人目の素数さん
18/10/13 16:50:22.51 gyagjTBG.net
すいません。170は >>168 です
176:132人目の素数さん
18/10/13 16:51:18.23 QG1ji9oP.net
そうですよね
で今AとかA'は存在しますか?
177:132人目の素数さん
18/10/13 17:11:07.47 gyagjTBG.net
…もしかして閉区間の端というかx=aになっている所しか片側微分できない、つまり
x=0になってないからxが0に近づくような極限が取れないんということですか?
178:132人目の素数さん
18/10/13 17:15:20.47 QG1ji9oP.net
f(x)は0に近づきますけど、f(a)は10ですよね
10/0で発散しますよね
179:132人目の素数さん
18/10/13 17:32:03.62 gyagjTBG.net
例えば連続の定義で
(x→a)f(x) = f(a)
となるのはa自体の値、右側の値、左側の値の微小区間中の三点が同じ値となるから連続とされるのだと理解していました。
なのでx→aとx=aは違うのではないんですか?
f(x)=x (x≠0)
f(x)=10 (x=0)
をx→0 に近づけてもx=0にはならないのでは?
180:132人目の素数さん
18/10/13 17:33:33.40 QG1ji9oP.net
ならないですけど、f(x)→0ですよね
(f(x)-f(a))/(x-a)→10/0ですよね
181:132人目の素数さん
18/10/13 17:33:53.30 gyagjTBG.net
限りなく0に近いxというのはx≠0の範囲にあるのではないでしょうか?
182:132人目の素数さん
18/10/13 17:35:38.97 gyagjTBG.net
理解しました。単純なことに気づけていませんでした。
ありがとうございました。
183:132人目の素数さん
18/10/13 18:16:26.24 Pxns/GWT.net
>>169
なるほど、ずっとコーシーの関係式とかで色々やってたんですが、
べき級数に展開できるかどうかで考えるとすごくやりやすいですね。
ありがとうございました。
184:132人目の素数さん
18/10/13 18:52:25.98 mP8wYyxk.net
a≧b+c+d+e+f
2b≧a+c+d+e+f
5c≧a+b+d+e+f
10d≧a+b+c+e+f
20e≧a+b+c+d+f
40f≧a+b+c+d+e
を満たすa,b,c,d,e,fを1つ挙げよ
ただしa=b=...f=0を除く
ない場合はないことを示せ
185:132人目の素数さん
18/10/13 19:24:46.04 F0L0yIUK.net
大学学部レベル…
186:132人目の素数さん
18/10/13 21:18:22.28 mP8wYyxk.net
>>181
Fランなんだよなあ
187:132人目の素数さん
18/10/13 21:40:24.18 F0L0yIUK.net
a+b+c+d+e+f = t とおいて考えろ
188:132人目の素数さん
18/10/13 21:54:50.93 mP8wYyxk.net
>>183
わかった
189:132人目の素数さん
18/10/13 23:06:46.14 8xQH1CLZ.net
わかった(わかってない)
190:132人目の素数さん
18/10/14 00:29:59.89 gRtV8IFJ.net
>>185
なんか大学入ってから数学難しいなと思ってたのに
世間的には違うみたいで悲しかった
191:132人目の素数さん
18/10/14 01:53:35.10 Z+BEpF1/.net
最近ふと気になったもので質問です。
一般に、ある辺の比をもつ任意の多角形は辺の組み替えにより1つ以上の多角形を再構築できる。
このとき辺を組み替えると円に内接するような多角形が存在するとして、その多角形の面積は辺を組み替えてできるあらゆる多角形の中で最大の面積を持ちうるか。
という問いなのですが、いかがでしょうか。多面体の場合については論文が存在するそうです。
分は自分で考えたものなので、不備があれば都度補足させていただきます。スレチでしたらご容赦ください。
192:132人目の素数さん
18/10/14 02:42:44.98 T+PW5b/z.net
そりゃそうじゃね?
4点任意にえらんで円に内接しなけりゃ面積ちょっくら大きくできるじゃん。
最大値は存在するだろし。
193:132人目の素数さん
18/10/14 08:22:00.12 ZpviwebP.net
藁
194:132人目の素数さん
18/10/14 22:03:31.03 kgZLBirm.net
あぁすごいエッチだね。どこ住み?
195:132人目の素数さん
18/10/15 08:53:15.32 RBJiR9dt.net
正則な曲線Cを考える。
この曲線Cを2つのパラメータ表示p=p(t) (t∉[a,b])とq=q(u) (u∉[c,d])で表す。
それぞれの表示での始点についてp(a)=q(c)が成り立つ事を示せ。
お願いします。
196:132人目の素数さん
18/10/15 16:14:29.39 BXI9sOsu.net
数学で言う「正則(regular)」「正規(normal)」ってどういったニュアンスで使い分けられてるんですか?
正則行列(regular matrix), 正規行列(normal matrix) くらいは覚えてるんですが、
正則空間(regular space), 正規空間(normal space) こっちはどっちがどっちかすぐに分からなくなります。
たぶん他にも使われてますよね、初見で意味の見当がつくようになりたいです。
197:132人目の素数さん
18/10/16 01:19:43.77 GY/ZYipc.net
普通と標準の差
198:132人目の素数さん
18/10/17 09:30:41.38 XmI0cwXc.net
それ、差っていう程の違いは無いでしょ。
こういうのは名前自体に大して意味はないので、慣れで覚えるしかないと思う。
199:132人目の素数さん
18/10/18 22:42:23.56 nzk8ujIt.net
Dを平面内の領域とする。
曲面Sを p:D→R^3 と定義する。
曲面Sの境界∂Sは平面内の領域Dの境界∂Dの像p(∂D)で与えられる。
これって一般で成り立つ?
200:132人目の素数さん
18/10/19 00:24:01.34 cPe1eAtC.net
同境理論みたいなのでも考えてるの?。
201:132人目の素数さん
18/10/19 03:56:55.76 BnOq56I0.net
写像が連続でない場合を考えてみろ
202:132人目の素数さん
18/10/19 16:02:12.61 ma8AGNiA.net
普通は大多数、標準は少数
203:132人目の素数さん
18/10/19 20:13:14.04 p08D4/p2.net
>>195だけど写像が連続なら成り立つ?
204:132人目の素数さん
18/10/20 00:19:01.01 ksCx7rdX.net
μをメビウス関数として
∞
買ハ(n)/n
n=1
の収束性って、現時点でリーマン予想の仮定無しに証明できてたりしますか?
もしできてたら(できればできてなくても)その辺のことがある程度詳しく載ってる文献を教えていただけたら幸いです
205:132人目の素数さん
18/10/20 01:46:11.88 /zyiypza.net
>>200
wikipediaによるとΣ[n≦x]μ(n) ~ 0 でこれは素数定理と同値だそうな。
URLリンク(en.wikipedia.org)
とするとΣ[n≦x]μ(n) = s(x) として
Σ[n≦x]μ(n)/n
= ∫[1-0,x] (1/x) ds(x)
= s(x)/x - 1 - ∫[1,x] (-1/x^2) s(x) dx
なので収束すると思う。
206:132人目の素数さん
18/10/20 03:47:14.28 /zyiypza.net
>>200
f(s) = Σ (1+μ(n))n^(-s) とおく。
f(s) = 1/ζ + ζ は re(s)>1 で絶対収束し、s=1 を一位の極とするのでウィーナー=池原の定理より
1/xΣ[n≦x](1+μ(n)) → res(f,1) = 1 (x→∞)。
(ウィーナー=池原の定理 URLリンク(ja.wikipedia.org))
以下>>201。
ウィーナー=池原の定理は Lang の Algebraic Number Theory にのってる。
分厚い本だけど定理の証明はその部分(4,5ページ)だけ独立しててほとんど前提知識なしで読める。(Lubesgueの収束定理くらい。)
207:学術
18/10/20 08:21:02.73 ZeTpAvUB.net
記号や数式のコツを覚えれば、数学はまだ短絡的で、準備段階にあるような気がする。
将来的な血統を仕込んでいくために、複雑な数式や理論をあげたらいいと思うけど。
数学の代用教員だって、説明い多くの時間を割くから、自分なりに理論を組んで
見つめなおしてみる、数式や解法をね、は役に立つ思う。
208:132人目の素数さん
18/10/20 11:11:14.18 8nbGtLAk.net
>>200 ですが解決しました。
>>201さんが与えた評価の積分部分が収束するには、メルテンス関数M(n)が x/(logx)^(1+ε) あたりで抑えられる必要があるのではと思い、調べてみたところ、
O. Ramar´e さんの論文 From explicit est
209:imates for primes to explicit estimates for the M¨obius function で 買ハ(n)/n の評価が直接与えられていました… ご協力ありがとうございました。
210:名無しさん@そうだ選挙に行こう! Go to vote!
18/10/22 08:47:06.12 Nzro2YsM.net
神保道夫の『複素関数入門』
で
f(z)=1/(zsinz)のz=0でのローラン展開は
f(z)
=1 / (z * z * (1 - z^2/3! + z^4/5! - ... ) ...①
=(1 / z^2) * (1 + z^2/3! + ... ) ...②
とあるのですが、 ①から②への変形にあたり
1/(1 - z^2/3! + z^4/5! - ... )=(1 + z^2/3! + ... )は
どのように逆数を導出しているのでしょうか
211:132人目の素数さん
18/10/23 12:10:05.82 IdkQM6MY.net
リーマン曲率テンソルの変分計算の途中に出てくる
URLリンク(imgur.com)
( URLリンク(ja.wikipedia.org)アインシュタイン・ヒルベルト作用 )
この式の導き方を教えてください。
212:132人目の素数さん
18/10/23 14:49:38.12 IdkQM6MY.net
自己解決しました。思ってたよりも簡単な計算でした。
URLリンク(imgur.com)
213:132人目の素数さん
18/11/01 09:05:48.90 MVNLai4i.net
べき級数には収束円というものがあるけど、
べき級数が収束する範囲は必ず円になるの? (複素数だとして)
いびつな形になったりしないの?
実数の場合、±r の間が収束するけど、マイナスの方がちょっと長いなんてことはありえない?
214:132人目の素数さん
18/11/01 10:29:03.53 26ynr2R8.net
ないですね
証明も探せばすぐ出てくるでしょう
215:132人目の素数さん
18/11/01 14:40:52.31 DGlwDrwF.net
「べき」級数なら収束が絶対値で決まるから円にしかならん
ディリクレ級数だと実数部で決まるから縦の帯状になる
216:132人目の素数さん
18/11/02 00:39:23.77 NishSVMQ.net
解析接続を一般化したのが層ともみなせる。
芽とか茎とか数学植物園用語。
217:132人目の素数さん
18/11/02 11:44:24.71 085YgNyt.net
2 つのベクトルのプログラム的な連結演算は数学的になんと呼ぶのでしょうか?
具体的には
[a,b], [c,d] → [a,b,c,d]
のような写像?演算?です.プログラミング言語では良く concat と呼ばれるようです.
218:132人目の素数さん
18/11/02 12:03:03.93 JvjPlO0/.net
テンソル積ですね
219:132人目の素数さん
18/11/02 13:11:47.57 P3IX5uEj.net
演算構造が伴ってないと単なる直積
220:132人目の素数さん
18/11/02 13:26:39.99 8R7JuwY3.net
直積じゃなくて直和っぽくない?
>>212の書き方だと
221:132人目の素数さん
18/11/02 22:25:46.85 8R7JuwY3.net
リスト表現の集合の論理的併合だろうからやっぱ直和だと思うが。
222:132人目の素数さん
18/11/03 01:32:03.10 ZZghPhxK.net
合成
223:132人目の素数さん
18/11/03 14:28:29.90 jgxJ/Oma.net
直積と直和って何か違うんか?
224:132人目の素数さん
18/11/03 15:56:56.52 zXQFAOy1.net
直和の定義は扱う対象によって違ってくるから誤解を生みやすい。
この場合はベクトル空間の直和だから、あるベクトル空間の互いに交わらないふたつの部分ベクトル空間V, Uに対して、和V+Uが直和(内部直和)ってことになる。
任意に与えられた2つのベクトル空間V,Uの直和(外部直和)は成分毎の演算を入れた直積として扱うのが普通のやり方だと思う(つまりベクトル空間の外部直和はわざわざ定義しない)。
>>212の場合は与えられたベクトル[a,b],[c,d]が属するベクトル空間が記載されていないから不確かだが、おそらく形式的に並べてるという意味に見えるので、ベクトル空間の直積を扱っていると見た方が無難。
無限個のベクトル空間
225:の直積と直和(外部直和)になると直和の定義はもう少し一般化する必要がある。
226:132人目の素数さん
18/11/03 19:44:17.31 7y/Cj8Fi.net
ベクトルで積だと
縦ベクトルと横ベクトル、ブラケット記法じゃないと
なんか
227:132人目の素数さん
18/11/03 21:21:26.01 5XqagTsD.net
直積というのはただ並べて書くということだからな。積という用語にこだわらない方がいい。
228:132人目の素数さん
18/11/03 22:01:00.75 7y/Cj8Fi.net
並べるにしてもタプルを隔てて括弧付きだと積だけど括弧外して同じ階層に並べちゃうと和だろ。
((a,b),(c,d))なら(a,b)クロス積(c,d)だけど
(a,b,c,d)じゃあ(a,b)結合和(c,d)って感じ?
229:132人目の素数さん
18/11/03 22:02:06.16 7y/Cj8Fi.net
Mathematicaのリスト=ベクトルな仕様そのモノだな
俺的には。
230:132人目の素数さん
18/11/03 22:06:48.14 5XqagTsD.net
>>222
そこで言う積と和の用語の使い方は直積と直わにおける積と和の用語の使い方と違うということが言いたいんだが。
231:132人目の素数さん
18/11/03 23:03:55.66 7y/Cj8Fi.net
積と和って双対だし
圏論だと
232:132人目の素数さん
18/11/04 03:25:14.74 UNBK62VU.net
>>225
それは直積と直和。ベクトルの演算としての積と和は決して双対にならない。
233:132人目の素数さん
18/11/04 09:04:21.40 7Yc/W9f3.net
圏論だと。
直和って直積のことだろ。的な古いレスに言いたくなった。
まあリー環とリー群みたいに局所化すると同じみたいな対象もあるけど。
234:132人目の素数さん
18/11/07 16:27:09.49 qM6Rb4EK.net
ルベーグ積分の可測関数と可積分関数って何が違うんですか?
235:132人目の素数さん
18/11/07 18:54:20.26 pX99uhbi.net
U、VをR^n、R^mの開集合
fをUからVへの全単射で連続、f^(-1)が連続でない例ってありますか。
236:132人目の素数さん
18/11/08 01:02:46.52 jYv2ZgH0.net
ないに一俵
237:132人目の素数さん
18/11/08 14:43:22.77 KayDLUiW.net
点列を作って証明するのが簡単かな
238:132人目の素数さん
18/11/09 13:37:13.59 PyZPpX+4.net
確率変数の和の初歩的なことなんだが
確率変数X,Yが独立で0以上のとき
fⅹ+y(u)=∫[0,u]fx(x)fy(u-x)dx
これって積分範囲にuを含んでるのにこれを無視してu微分してることにならんの?
積とか商みたいに積分範囲にuが入ってなければxの積分にuが影響しないから
x積分する前にuで微分しても良いのはわかるんだけど
実際何個が計算すれば答えが一致するから帰納的には確認できるんだけど
イマイチしっくりこない
239:132人目の素数さん
18/11/09 14:01:39.01 CZZefxv8.net
どこがu微分なんだ?
240:132人目の素数さん
18/11/09 14:36:25.85 CZZefxv8.net
Z=X+Y
fx(ξ)=(d/dξ)P(X≤ξ)=P(ξ-dξ<X≤ξ)/dξ, fy(η)=(d/dη)P(Y≤η)=P(η-dη<Y≤η)/dη
fz(u)=(d/du)P(Z≤u)=(d/du)P(X+Y≤u)=P(u-du<X+Y≤u)/du
=(1/du)P(u-du<X+Y≤u)∫ fx(ξ)dξ=(1/du)∫ P(u-du<X+Y≤u)P(ξ-dξ<X≤ξ)(1/dξ)dξ
=∫ P(ξ-dξ<X≤ξ)(1/dξ)P(u-ξ-du<Y≤u-ξ)(1/du)dξ=∫ fx(ξ)fy(u-ξ)dξ
ξ<0 で fx(ξ)=0, u-ξ<0 で fy(u-ξ)=0 なら積分範囲は 0≤ξ≤u として良い
241:132人目の素数さん
18/11/09 15:02:07.67 K6Umurw2.net
A,B の2名のプレイヤーが不完全情報ゲーム(例えばポーカー)をしているとき
情報には以下の3種類があると思います。
1. 両プレイヤーにとって未知の情報: 例:中央の山札の順序
2. 相手プレイヤーにとってのみ未知の情報: 例:自分の手札
3. 両プレイヤーにとって既知の情報: 例:捨てられている札
この 1.~3. それぞれの情報の名称ってあるのでしょうか?
ご存知の方がおられましたらお教え下さい。
242:132人目の素数さん
18/11/09 15:23:26.23 XwC4Bifi.net
>>229 ない.
領域不変の定理( invariance of domain theorem ) の系として証明可能.
243:132人目の素数さん
18/11/10 10:48:04.72 bWR20wG0.net
定理のあとに出てくる系ってなんなの?
244:132人目の素数さん
18/11/10 11:43:20.28 fhcwKvNe.net
すごく簡単な定理
245:132人目の素数さん
18/11/24 03:49:45.73 xvw+rUQX.net
ある無限級数の和の順番を任意に変えても、同じ有限の値に収束する
→その級数は絶対収束する
は言えますか?
246:132人目の素数さん
18/11/24 07:12:00.70 /XW9nn0/.net
条件収束だとしたら、任意の値に収束する(または発散する)ように入れ替え可能だから言える
247:132人目の素数さん
18/11/24 08:30:15.27 UwerUaL6.net
ありがとうございます
>>239の文の感じで検索していて該当するような記述が見つからなかったのですが
レスを頂いて条件収束で検索したら
教えて頂いた内容のリーマンの級数定理の記述を見つけられました
248:132人目の素数さん
18/11/30 18:46:25.86 6LRZL1yg.net
体積確定集合上で可積分でない関数はありますか。
249:132人目の素数さん
18/12/01 14:09:07.37 tQ+3cEm7.net
自明なこと聞いてるのは何故?
250:132人目の素数さん
18/12/08 23:24:04.33 il59ZBWL.net
ヴィタリの収束定理のWikipediaのページ
URLリンク(ja.m.wikipedia.org)
の記述について質問です
「定理の逆」の項目の内容がどう「定理の内容」の項目の逆になっているのか理解できません
特に、「定理の逆」の項目で
3. lim_{n→∞} ∫_E f_n dμ は全てのEに対して存在する
というのが前提条件としてありますが、これは「定理の内容」の項目の
2. lim_{n→∞} ∫_X |f_n - f| dμ=0
と対応してるのでしょうか?もしそうだとしたら、どのように対応してるのでしょうか?
それとも別のことと対応してるのでしょうか?
よろしくお願いします
251:132人目の素数さん
18/12/09 14:10:52.79 i1oLn9VS.net
2. を弱くしたもの
252:132人目の素数さん
18/12/09 15:31:21.59 RP5ydWNx.net
ありがとうございます
ヴィタリの定理を形式的にA→Bとすると、
定理の逆の項目は、(B→Aも成り立つが、)
A、Bからそれぞれf_n → f a.e. as n→∞の条件を外したA'、B'にたいしてB'→A'が成り立つ、という形で書かれているということですね
理解できました
253:132人目の素数さん
18/12/14 22:56:10.79 YXEnmdNE.net
関数の最大の解析接続として得られるリーマン面って何に使えるんですか?
log xのリーマン面とか、e^xのリーマン面が得られたとして、そこから何ができますか?
254:132人目の素数さん
18/12/16 12:50:15.51 de9nZZOi.net
直観的理解
255:132人目の素数さん
18/12/20 10:21:25.17 Pn87HG+W.net
"基底の変換行列"と"線形変換の表現行列"の違いがわかりません!
256:132人目の素数さん
18/12/20 14:10:28.96 ttA84OCj.net
利用法の違い
257:132人目の素数さん
18/12/20 15:02:49.16 Pn87HG+W.net
>>250
調べてみます!
258:132人目の素数さん
18/12/20 15:06:35.82 icwK3pJz.net
>>249
右変換か左変換かの違い
259:132人目の素数さん
18/12/20 20:14:40.21 Pn87HG+W.net
>>252
具体的ッ!
頭に入れながらもう一度参考書読みなおしてみます!
ありがとうございました
260:132人目の素数さん
18/12/22 08:15:48.10 XhEkJrqd.net
線形代数が苦手で行列やベクトルが出てくると手が止まります。
下の式をもう少し簡単にまとめることは可能でしょうか。逐次最小二乗法計算です。
P(k)=(1/λ){P(k−1)−P(k−1)Ψ(k)Ψt(k)P(k−1)/(λ+Ψt(k)P(k−1)Ψ(k))}
Ψ:2x1ベクトル
Ψt:転置行列
P(0):2x2単位行列
λ:0.9
261:132人目の素数さん
18/12/22 13:35:14.36 p4vJX2S+.net
Ψが一定なら発散するだけだな
262:132人目の素数さん
18/12/23 09:00:07.4
263:9 ID:IBB7VTPW.net
264:132人目の素数さん
18/12/26 17:53:28.39 gOPljzBZ.net
確率変数の収束について教えてください。
収束には概収束、確率収束、法則収束、平均収束、などがありますが、
定義を読んだところ、どれもL^2空間での収束とは一致していないように思います
(一致してたら教えてください)
ヒルベルト空間L^2の元としての収束は扱わないんですか?
265:132人目の素数さん
18/12/26 18:05:22.52 fGpyX2NW.net
自乗平均収束は平均収束(ry
266:257
18/12/26 18:14:03.34 gOPljzBZ.net
よく調べたら平均収束でした。
僕の読んでる本では、期待値が確率密度変数f_Xを使って値域での積分によって定義してあるので、
定義域での積分との関係に気づきませんでした。
267:132人目の素数さん
18/12/31 06:56:18.32 pSG57e5+.net
ルベール測度の導入はカラテオドリの外測度を使うのが現代的と教科書に書いてありましたが
内測度と外測度から導入するのに比べて何がありがたいのでしょうか?
ルベール測度だけを考えた場合はカラテオドリの外測度を使った方が理解しやすいということも無いように思います
他の集合の測度を構成する場合にカラテオドリの外測度を使うのが便利な場合があり、それと統一的に扱えるのが嬉しい、という感じですか?
268:132人目の素数さん
18/12/31 11:25:40.90 BZiR8w3H.net
ルベール測度って初耳やな
269:132人目の素数さん
18/12/31 18:40:05.63 GZ15VMch.net
ルベーグ測度の間違いです、すみません
270:132人目の素数さん
19/01/01 12:36:02.85 njNJ+Ptu.net
そもそも質問する意味がないんじゃないか
271:132人目の素数さん
19/01/08 11:10:11.21 EN/Ha9/h.net
偏微分方程式論でいい本ありませんか?
この分野ってあまりまとまってない気がする
とりあえず物理で出てくる方程式だけでいいから
・解の存在と一意性、そのための条件
・解を近似的に計算する方法
を数学的に厳密に解説してる本ありませんか?
272:132人目の素数さん
19/01/09 12:44:56.58 JvnAUfFF.net
デデキント切断による実数の構成を勉強していますが、
有理数がデデキント切断可能であることの証明はどうすればいいですか?それともデデキント切断可能なのは公理ですか?
273:132人目の素数さん
19/01/09 12:53:54.39 JvnAUfFF.net
なんでもないです
わかりました
274:132人目の素数さん
19/01/09 21:44:49.98 rw8iXDnQ.net
URLリンク(i.imgur.com)
大学の幾何学のレポートなんですがこの1から4までどなたか解答お願いします…!
275:132人目の素数さん
19/01/09 23:55:49.50 rHuKGeHZ.net
大学に通うことを
学費を払って知恵と知識を買い、得た知識を対価として単位を入手、必要単位を対価にして大卒という社会的信用を買う
というゲームであると想定する
単位をとるためのレポートの代行は、代行者の知恵と知識を借りて単位を得る行為とみなすとき、
代行者に払われるべき対価はどのように算出されるのが妥当であるか答えよ (11点)
276:132人目の素数さん
19/01/10 07:44:46.55 ja7RlnH1.net
四色問題って六角形で敷き詰められた図で破綻しそうなんだけど
六角形の周りに六角形が六つ
塗り分けるには最低七色必要になる
277:132人目の素数さん
19/01/10 08:02:04.06 l+2r4QvR.net
冗談ですね
278:132人目の素数さん
19/01/10 09:34:19.04 cB+NAwhN.net
偏差値のガラパゴス市場価格(1ポイントあたり)
279:132人目の素数さん
19/01/10 19:42:05.00 8Ecm/jc0.net
>>269
1234123
280:132人目の素数さん
19/01/17 01:51:28.91 gDABg7rV.net
ベクトル場の線積分と面積分って、統一的に扱えますか?
線積分はベクトル場を曲線の接戦方向へ射影して、面積分は面の法線方向に射影するので、
本質的に別のものなのでしょうか?
面積分はn次元空間に埋め込まれたn-1次元多様体に一般化できると思いますが、この方法だと
線積分とは違う定義になりますよね。
281:132人目の素数さん
19/01/17 07:52:50.54 TqEuVGhz.net
はいはい微分形式微分形式
282:132人目の素数さん
19/01/17 11:33:18.77 gDABg7rV.net
?
283:132人目の素数さん
19/01/17 14:09:19.04 1vpM2/qY.net
微分形式
1-形式:線積分要素
2-形式:面積分要素
3-以上:超曲面要素
284:132人目の素数さん
19/01/17 14:49:23.08 gDABg7rV.net
>>276
たぶん分かりました
285:132人目の素数さん
19/01/17 17:16:21.30 aCWS1t+S.net
ベクトル場の余切断
286:132人目の素数さん
19/01/18 14:16:56.28 SeSoGWBh.net
よせつ
287:132人目の素数さん
19/01/19 22:28:06.58 osjQHfqC.net
公理的集合論を勉強してたら集合の要素数を数えるという行為がよく分からなくなりました
例えば集合族{x}が与えられたときに、これ以上の情報は無しで、xの要素数を返す関数f:{x}→N(xが無限集合の場合は例えば-1を返すとして)を具体的に作れますか?
また、集合族Xが与えられたとき、
Y={x∈X| xの要素数は(有限で)偶数}
みたいなことはできますか?
288:132人目の素数さん
19/01/20 02:56:12.98 OdHQIeyw.net
メタとモデルを区別すればわかるようになるかもしれないね
289:132人目の素数さん
19/01/20 13:09:54.45 tHzdO68J.net
佐藤超関数ってシュワルツの超関数より絶対にいいんですか?
偏微分方程式の研究のために超関数を勉強しようと思うんですが、シュワルツの方が古くて
佐藤の方が新しいんですよね。シュワルツをやらずにいきなり佐藤をやっても大丈夫ですか?
290:132人目の素数さん
19/01/20 13:25:24.32 nuzJ1rj7.net
解析関数だけ?
291:132人目の素数さん
19/01/20 14:58:22.00 f1w+gSVg.net
普通にどっちも概要ぐらいやっとけよ。
なんかそういう浚い方が苦手だから変な質問しかできてないようにもみえるが。
292:学術
19/01/20 17:46:31.01 oIhGGwLE.net
センター受けてないいけど。旬報の冊子はのぞいた。あのレヴェルから
いかされると、私立のカリキュラムはきついものがあるよ。
293:132人目の素数さん
19/01/20 18:28:33.35 ZuHcJVxd.net
◻p1⊃(♦(p1⊃p2)⊃◻p2)
◻♦(p1⊃p1)
はそれぞれクリプキ恒真か否か?
♦p1⊃◻◻p1
はS4で証明可能か否か?
◻(p1v◻p2)⊃(◻p1⊃◻p2)
はS5で証明可能か否か?
恒真であるかないかの理由と証明可能であるかないかの理由も教えて頂けるとありがたいです
294:132人目の素数さん
19/01/20 19:17:53.91 OM0hzUpI.net
>>281
そうですか 当面理解できそうにないのでとりあえず諦めます
295:132人目の素数さん
19/01/21 00:22:13.45 f+GfRTnn.net
解析学の本では、正則関数を導入した後、その実部と虚部がコーシー・リーマンの方程式を満たすとか、
ラプラス方程式を満たすとかいう話が必ずありますが、「で?」という感じです。
そこで話が終わっていて、「だから何なのか?」が分かりません。
正則関数の実部と虚部が調和関数だということから、何か面白いことが出てくるんですか?
296:132人目の素数さん
19/01/21 08:23:31.44 tkNIKTjV.net
>>288
「で?」という感じです。
297:132人目の素数さん
19/01/21 13:53:18.16 w6a4JM45.net
応用に役立てない人には関係ない
298:132人目の素数さん
19/01/21 15:33:55.82 zNmm9+RD.net
「慌てる乞食は貰いが少ない」
何か面白いことや出世に繋がるかということを求める欲深さを見透かされるさま。
299:132人目の素数さん
19/01/24 18:35:51.50 6w+ePgN7.net
確率の定義で確率変数を標本空間からの写像と定義するのってどうなの?
数列は自然数からの写像だって言うのと同じくらい
とっつきにくいんでない?
300:132人目の素数さん
19/01/24 19:38:27.41 kcO1Hhjd.net
>>292
他にもっといい定式化があるなら考えて論文で発表すればいいじゃん。
でも、現時点での定式化にはかなり実績があるから、かなりの説得力がないと、「確かにそっちの方がいい」と認めてもらえるものは作りづらいだろうけど。
301:132人目の素数さん
19/01/24 20:17:10.12 TF8Pu5er.net
>>292
確率変数はただの写像ではなく可測関数です
高校で学ぶ離散確率変数のようにただの対応関係のみで済む場合は可測関数を持ち出す必要はないかもしれないですが、もっと広く扱う場合は使わずに書くほうがむしろ大変になると思います
また、とっつきやすさは人によりますが、測度論を学んだ学生なら問題ないでしょう
302:132人目の素数さん
19/01/25 01:42:23.37 oK+RurMi.net
>>292
間接的な定義ではある
そういう風にみなせるということ
303:132人目の素数さん
19/01/25 13:51:59.35 3KYdzlZX.net
これ以上に自然な定義なんぞ無いだろ
304:132人目の素数さん
19/01/25 22:07:33.61 5ntIipjP.net
測度的エントロピーと位相的エントロピーの違いについて。
305:132人目の素数さん
19/01/26 06:46:52.53 s5yDVdbF.net
/人◕‿‿◕人\ < 訳がわからないよ
306:132人目の素数さん
19/01/26 13:44:14.28 /uPdrYC2.net
おー似てるじゃん
307:132人目の素数さん
19/01/26 15:06:04.49 jWxtVz2n.net
フォントで全然似てへん
308:132人目の素数さん
19/01/27 01:04:45.93 rmxOthJB.net
>>294
身長と体重を量るって場合の標本空間は?
それ可測空間なの?
身長と体重は可測関数?
309:132人目の素数さん
19/01/27 02:06:07.28 yWRAs7/e.net
測定の何が確率変数だって???
310:132人目の素数さん
19/01/27 06:05:02.30 dStLsC0d.net
初歩的な質問で悪いんだけど
全てのxに対してx ∈R,x≠0が成り立つって言いたい時
∀ x∈R(x≠0)って書き方でいいの?
スレチだったら誘導お願いします
311:132人目の素数さん
19/01/27 06:46:44.04 AROpQTQd.net
>>303
逆に聞こう
∀x∈R(x≠0)って書き方だと「Rに含まれる全てのxに対してx≠0が成り立つ」って意味になるけど、言いたいことはそれでいいの?
312:132人目の素数さん
19/01/27 07:14:07.37 dStLsC0d.net
>>304
細かい言葉の定義とか分からないから俺にはそれで合ってるように思えるけど何か違うんだろうな
できれば簡潔にどう書くべきか教えてほしい
313:132人目の素数さん
19/01/27 08:54:16.92 yWRAs7/e.net
そもそも「すべてのxに対して」って言うけど、そのxはどういうものなのかがわからん
314:132人目の素数さん
19/01/27 09:17:16.59 dStLsC0d.net
じゃあいいや
専門外だから質問で返されても分かるわけないし簡単な書き方に変えます
315:132人目の素数さん
19/01/27 10:02:20.01 AROpQTQd.net
>>307
質問されている対象が何かわからないから確認したまで
本人も理解してないものを他人が答えられる道理はない
316:132人目の素数さん
19/01/27 10:07:09.50 rmxOthJB.net
>>302
得た値
317:132人目の素数さん
19/01/27 10:08:49.86 rmxOthJB.net
>>305
∀x(x∈R∧x≠0)
じゃないかと聞かれてるんだよ
318:132人目の素数さん
19/01/27 10:13:55.42 rllDwut8.net
実数じゃない戻り値を返す物理現象って例えばなにがある?。
タイミングとして量子位相な周期性の剰余っぽい物理量を返すにしても標数がゼロじゃないと見做す方が妥当な気がする。
319:132人目の素数さん
19/01/27 10:
320:15:08.28 ID:9PLneb/G.net
321:132人目の素数さん
19/01/27 10:15:56.98 rllDwut8.net
正確には対角化済みの作用が作用された実数の組になったベクトル量が返り値の定義域というか値域だと言うべきかな。
322:132人目の素数さん
19/01/27 10:20:20.38 PLZpmgAP.net
>>312
それが一番近いんじゃないかな
日本語で書くなら「ゼロでない任意の実数xについて、…」
323:132人目の素数さん
19/01/27 10:46:07.88 rmxOthJB.net
>>311
電荷とか?
324:132人目の素数さん
19/01/27 12:30:22.06 a782phtW.net
正解はこれ!
∈(×∀×)∋
325:132人目の素数さん
19/01/27 21:14:33.96 /y50ofZ2.net
>>301
人間とか特定の生物の身長,体重なら
過去,未来を合わせても
いずれ絶滅して有限の個体しかいないから有限集合だな
326:132人目の素数さん
19/01/27 21:42:31.04 rllDwut8.net
プランク秒以下でスナップショット撮れんのか
327:132人目の素数さん
19/01/27 22:13:04.20 rmxOthJB.net
>>317
それて確率変数定義してないでしょ
標本空間からの関数が確率変数
個体全体を標本空間とするって
X(ω)が確定するけど?
328:132人目の素数さん
19/01/27 22:22:28.17 NEK8GagY.net
フェムト秒なら
329:132人目の素数さん
19/01/27 22:29:12.63 rllDwut8.net
フラクタル次元は定まってもいわゆる長さ自体は一意に定まらない場合もあるしな。
330:132人目の素数さん
19/01/28 00:07:53.52 LqHtIdUJ.net
xの3乗根の関数
f(x) = x^(1/3)
って原点で1回連続微分可能ですか?
そもそも導関数が原点で発散するから微分可能ですらないように思うのですが、
違いますか?
331:132人目の素数さん
19/01/28 00:44:08.66 Kqo8tXVx.net
>>322
微分可能じゃ無いのは自明
332:132人目の素数さん
19/01/28 10:49:09.99 TtDELvB0.net
連続微分可能でないであってるが定義の欠陥として知られている事例だね
y = x^3は連続微分可能だけど、その軸を入れ替えただけで可能でなくなると
言っている。グラフ上の滑らかさはどちらも当然同等なのに
連続微分という指標でみるとx^3の方がなめらかという欠陥がみえる
333:132人目の素数さん
19/01/28 12:52:35.84 GmhxTqxD.net
しょうもな
334:132人目の素数さん
19/01/28 16:15:17.44 yhMOwuPt.net
ある点において、あるいは大域的に、微分が消えているか否か(高次元であれば単射性や全射性)はその写像を特徴付ける重要な性質であり、明確に区別される
元の関数がなめらかであっても逆関数がなめらかとは限らない、という例に過ぎない
普通この現象を欠陥とはみなさない
335:132人目の素数さん
19/01/28 20:21:23.13 EGcootjQ.net
こういう中カッコの書き方ってまずいかな?
URLリンク(o.8ch.net)
336:132人目の素数さん
19/01/28 20:49:39.89 totMCVYF.net
>>326
逆関数ってったって関数グラフの向き替えただけだろ?。
337:132人目の素数さん
19/01/28 21:04:02.33 yhMOwuPt.net
>>328
何が言いたいのか分からない
338:132人目の素数さん
19/01/28 21:04:36.33 SCUHX+s4.net
曲線とその像は区別しようね
関数とそのグラフは区別しようね
339:132人目の素数さん
19/01/28 22:20:10.46 Kqo8tXVx.net
>>324
軸を入れ替えたら関数として全然変わるからだよ
連続微分可能性って曲線のなめらかさをいってるんじゃないんだし
340:132人目の素数さん
19/01/28 22:22:03.32 Kqo8tXVx.net
>>328
アホダナ
向き変えたら多価関数になったり微分不能になったりで
まるで性質変わるのが当たり前だ
341:132人目の素数さん
19/01/28 22:22:51.19 Kqo8tXVx.net
>>324
>定義の欠陥として知られている事例
どこで知られてるの?
342:132人目の素数さん
19/01/29 02:46:26.33 9KCAwAaT.net
でもホモトピー性として定義したらグラフの向きなんて関係ないじゃん。
343:132人目の素数さん
19/01/29 03:35:32.40 9KCAwAaT.net
中間値の定理の発展史と捉
344:えて
345:132人目の素数さん
19/01/29 08:29:23.58 2MAb6lmr.net
>>334
アホダナ
微分可能性は関数についての性質
ホモトピー性って何だ?ホモトピー不変性?
向きどころか高木関数ですら放物線と変わらんわ
>>335
どうでもよさげ
346:132人目の素数さん
19/01/29 14:27:26.73 cq0xWlRA.net
しろうとが言葉に溺れてる
347:132人目の素数さん
19/02/03 12:01:28.52 aUwwoZR2.net
離散数学、鳩の巣原理の問題についてご質問です。
以下の問の解法・解答をご教授願います。
前者の(b)は鳩の巣原理を使い、modで解くのであろうとまではたどり着いたのですがそこから手詰まりました。
後者は(a)の書き方が分からないのと、(c)がこちらも鳩の巣原理をどのように使えばいいか迷っています。
よろしくお願いします
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
348:132人目の素数さん
19/02/03 18:06:27.54 2z3OJouk.net
前者
S1~S10がどれも10の倍数でなければ鳩ノ巣原理よりいずれかのs,tでSi≡Sj (mod 10) となる。
この時Σ[k=i+1,j]akは10の倍数。
後者
選んだAの空でない部分集合の和の取りうる値の範囲は1~945であるが、空でない部分集合は1023個あるので、鳩ノ巣原理より、いずれかの相異なるB1, B2において Sum(B1)=Sum(B2)となる。
A1=B1\B2, A2=B2\B1 が条件を満たす。
‥‥ちっとも大学レベルに思えないけど。
数オリ的な難しさはあるけどそれじゃない感しかない。
349:132人目の素数さん
19/02/03 18:22:52.62 +JQdBv6v.net
書き込もうと思ったらすでに出てた
1つだけ訂正すると最大値は955だと思う
あとは全く同じ
高校生向けの大学入試用テキストで同じ問題を当時みた記憶ある
そのときは10の倍数ではなくn個でやってたけど
350:132人目の素数さん
19/02/03 18:51:49.30 n7FciR1W.net
あ、ホントだ。955です。
パズルとしては面白いけどスタンダードな大学数学の教程から見るとちょっと違う感があるなぁ。
351:132人目の素数さん
19/02/04 22:44:32.26 f5aCOTv4.net
>>338です
>>339さん,>>340さん
ありがとうございます
離散数学の小話としての課題だったのですがどうも上手く出来なかったのでとても助かりました
ありがとうございます。
352:132人目の素数さん
19/02/07 17:14:04.57 Rht6BVLy.net
児ポ画像を離散フーリエ変換してアップロードしたら逮捕されますか?
353:132人目の素数さん
19/02/09 22:47:59.00 Ko3Cnsb3.net
Σx^n/nが[0,1)で一様収束しないことってどうやったら言えますか?
極限は対数関数だから連続だし、x^n/nそのものはちゃんと0に一様収束するし、項別微積でもうまく判定できないしで困ってます
コーシー列でないことを示す方向でしょうか?
354:132人目の素数さん
19/02/09 22:55:40.64 wlp3PStJ.net
>>344
x=1で破綻
355:132人目の素数さん
19/02/09 23:50:55.56 A6nmtN41.net
>>344
誤差項は
∫[0,x]t^n/(1-t)dx ≧ ∫[x/2,x]t^n/(1-t)dx ≧ -(x/2)^n log(1-x)/(1-x/2)
sup { -(x/2)^n log(1-x)/(1-x/2) | x<-(0,1)} = ∞ (∀n)
356:132人目の素数さん
19/02/10 01:27:18.19 jhuZpQjj.net
384=8!!
53760=2(10!!)+12!!
8755200=8(12!!)+13(14!!)
1805690880=15(14!!)+12(16!!)+9(18!!)
471092428800=10(16!!)+15(18!!)+16(20!!)+5(22!!)
153043438141440=
357:4(18!!)+2(20!!)+3(26!!) 規則性を見つけてくれ~(・ω・)ノ
358:132人目の素数さん
19/02/10 10:15:26.13 rs0oDsEA.net
学部入門レベルでは正しいという事項で、
研究レベルでは、正しいとは限らないかもしれないから研究されている、
ということって、あるんでしょうか?
359:132人目の素数さん
19/02/10 10:58:56.99 pWVxeeOK.net
んなーこたーない
__
/ ̄ l|
■■-っ
∀`/
__/|Y/\
ЁL__ |/ |
|/ |
360:132人目の素数さん
19/02/10 11:08:53.79 rs0oDsEA.net
>>349
ありがとうございます。
361:132人目の素数さん
19/02/10 11:28:25.77 N7Gbqc9/.net
いくらでもありそうだなぁと思ったけど、ここは物理板じゃなくて数学板だった
362:132人目の素数さん
19/02/10 11:40:59.55 QLyEOMl1.net
>>343
全射ではないが、単射なので捕まります
363:132人目の素数さん
19/02/10 17:32:44.19 q9DB31nQ.net
>>348
まず解の存在が保証されては居ない。
三等分家が湧く主要因。
364:132人目の素数さん
19/02/14 23:43:33.98 DJ6yKOQT.net
>>345-346
ありがとうこざいます
冪級数は次のセクションの話でしたが、x=1-1/nで部分和の差がs_[2n]-s[n]≧1/2*(1-1/n)^n→1/(2e^2)(n→∞)となるのでコーシー列ではない、よって級数は一様収束しないということですね
365:132人目の素数さん
19/02/18 17:53:51.48 vviJDeKz.net
tildeとかhat, bar, ^*とかの「飾り」って英語なんていうんでしょうか
直訳だとdecoration だけど見たことないので、、、
366:132人目の素数さん
19/02/18 20:30:37.84 z4goentu.net
IT用語辞典に文字修飾 character decoration て載ってるけど
和製英語かな?
367:132人目の素数さん
19/02/19 02:27:44.66 eUx8CyY3.net
λを実数とする
∫cos(λx)(e^{x}/(1+e^{3x}))dx from -∞ to ∞
お願いします。
368:132人目の素数さん
19/02/19 02:29:37.82 eUx8CyY3.net
>>357
複素積分の実数部分かなと思ってやってみたものの
到底計算できない形になってしまいました
369:132人目の素数さん
19/02/19 12:14:09.04 pWbpZkXv.net
>>357
cos(λx)=(e^(iλx)+e^(-iλx))/2だから
I(a) = ∫(-∞,∞) e^(ax)/(1+e^(3x)) dx (0<Re(a)<3)
を求めればよい
f(z)=e^(az)/(1+e^(3z)), 積分路Cを-R→R→R+2πi/3→-R+2πi/3→-Rの長方形にとると
留数定理より
∫[C]f(z)dz = 2πi Res[z=πi/3]f(z) = -2πie^(πia/3)/3
R→∞とすると
∫[C]f(z)dz → ∫(-∞,∞) (e^(ax)-e^(ax+2πia/3))/(1+e^(3x)) dx = (1-e^(2πia/3))I(a)
よって
I(a) = π/(3sin(πa/3))
あとは代入して
∫(-∞,∞) cos(λx)e^(x)/(1+e^(3x)) dx
= (I(1+λi) + I(1-λi))/2
= (2π/√3)cosh(πλ/3)/(1+2cosh(2πλ/3))
370:132人目の素数さん
19/02/19 16:23:17.00 DdqzgiWI.net
>>355
>>356
character decorationてのはワードとかでできる文字に色とか影つけたりするやつのことだろ
hatとかtildeは普通はaccentっていう
371:132人目の素数さん
19/02/19 22:03:27.79 KeU1fGzy.net
超幾何級数とか超幾何積分の超幾何って名前の由来はなんですか?
何を超越してるんでしょうか
372:132人目の素数さん
19/02/20 02:55:55.62 BfSFJ6hh.net
>>361
等比級数は幾何級数とも呼ばれます
級数に名前を付ける際に幾何級数を意識してhypergeometricという用語がつくられたのでしょう
373:132人目の素数さん
19/02/20 07:16:54.92 i0s8L4V9
374:.net
375:132人目の素数さん
19/02/20 14:03:35.15 vgXcsGpn.net
>>360
なるほどー、accentって発音に限らないんだ
376:132人目の素数さん
19/02/21 00:04:16.42 cP/RJtup.net
>>364
hatもtildeも発音だよw
377:132人目の素数さん
19/02/21 13:21:06.38 Z6lkd7lC.net
どう発音するんだよ
378:132人目の素数さん
19/02/21 13:33:53.26 4JuN4jOt.net
有限体上の代数多様体のゼータ関数をFrobeniusが誘導するetale cohomologyの線形写像のdeterminatで書き表せるって言いだしたのって誰が(どの論文が)最初ですか?
etale cohomology定義したのはGrothendieckだから、予想じゃなくてちゃんとした形で証明したのはGrothendieckが最初だと思うんですけど、
どっかで「Weilが特異コホモロジーのようなものを代数多様体にも定義できればWeil予想は証明できると予見した」みたいなこと聞いた気がするし、
そもそも「Weil cohomology」なんて名前まであるんだからやっぱりWeilかなって
でもWeilのNumbers of solutions of equations in finite fieldsみてもそんなこと書いてなくて困ってます
論文のこととか全然わからないので誰かお願いします
379:132人目の素数さん
19/02/21 13:45:56.41 TJLOi8lV.net
数列と積分の関係を教えて
380:132人目の素数さん
19/02/21 17:11:32.49 WPEUWQxM.net
>>367
学部レベルではない質問なのでスレ違いだと思いますが、自分の分かる範囲で答えておきます
私は有限体の代数幾何をほとんど勉強したことがないので、調べた結果を書いていきます
まず、証明を与えたのはGrothendieckで正しいと思います
論文名は調べればすぐに分かると思うので割愛します
あなたの挙げたWeilの論文の中ではコホモロジーについては触れていませんが、全集においては特異コホモロジー理論からWeil予想に導かれた、と記しています
SerreやGrothendieckはWeilコホモロジーの構成が予想の証明に繋がるということを50年代後半くらいにはすでに考えて、それを目標に研究していたようです
2人の交信録をまとめた本があるので、それを読むとより詳しく分かるのではと思います
また、彼らの当時の論文を読み漁るのも面白いと思います
381:132人目の素数さん
19/02/22 09:03:59.99 lVjkATMg.net
>>369
ありがとうございます
「学部レベル」が具体的にどのくらいかわからなかったのでここに質問しました、すみません
correnspondence Grothendieck Serreですかね
読んでみたいんですけど、英語は数学書程度で限界なのでちょっときつそうです
フランス語に関してはDeligneで苦労してるくらいなので…
大学の図書館でWeil全集見てみます
382:132人目の素数さん
19/02/22 10:00:35.56 zEGYqmpu.net
一応学部レベルでもこのくらいの数学史的興味関心は持つべきなのでは?。
383:132人目の素数さん
19/02/22 10:04:39.19 oNnrPAuA.net
昔の論文読むより
今の専門書読んだが良い
384:132人目の素数さん
19/02/22 16:33:56.53 zEGYqmpu.net
原論文じゃなくて沿革やら事の次第経緯の情報の方。
385:132人目の素数さん
19/02/23 01:33:53.04 0aaQJOB4.net
ほぼ要らない
386:132人目の素数さん
19/02/23 02:08:42.51 5bDKP0p0.net
えぇー
でもブルバキも体系に直接入れない代わりに独立した別巻の数学史を刊行してるじゃん。
387:132人目の素数さん
19/02/23 18:07:20.22 nSAC+v05.net
>>366
hatとかtildeはフランス語やらスペイン語とかで使われてるやつで
ああいうのは元々発音を少し変えるときに使うんだよ
ダイアクリティカルマーク
388:とかともいう
389:132人目の素数さん
19/02/24 00:58:31.86 G6B/wv0H.net
基底と固有ベクトルは関係がありますか?
基底がよくわかりません
390:132人目の素数さん
19/02/24 01:25:54.42 FUz3oYpy.net
x軸y軸z軸みたいなのが基底
固有ベクトルで基底を作ったりするから
関係ないとも言うべきでは無いかも知れないし
全然関係ないと言うべきなのかも知れない
391:132人目の素数さん
19/02/24 02:33:53.24 a3CdHeeG.net
全ての数学に関係はある
392:132人目の素数さん
19/02/24 02:45:50.93 4+BDb4Le.net
>>377
抽象的な実ベクトル空間にはもともと座標は定まっていません
基底をひとつ選択すると、座標表示ができるようになります
(例:e1,e2,e3をVの基底とするとき
v=x•e1+y•e2+z•e3∈Vを(x,y,z)と表す)
言い換えると、基底を決めることはベクトル空間とR^nの間の同型を決めることと同じです
ベクトル空間の基底を選択しておくと、ベクトル空間の元が単なる実数の組で書けたり、線形写像を行列表示できたり、計算がしやすくなります
ただし、これらの表示は基底の選択に依存していることに注意しましょう
ベクトル空間をはじめからR^nと書いていたり、写像が行列で与えられていることも多いですが、この場合は予め基底が選択されている、と解釈できます
一方、固有ベクトルは座標表示に依らずに定義されるものです
つまり、基底の選択とは関係なく決まっているものです
ただし、固有ベクトルを求める計算等をする際に座標表示を用いてすることは多いです
393:132人目の素数さん
19/02/24 13:32:35.87 P6030RXv.net
>>376
そうなのか Thanks!
394:132人目の素数さん
19/02/26 01:23:49.27 gjrBrYtA.net
子供の頃から風呂にも入れない貧乏な穢れ身分でいじめられっ子だったはすみうんこは
精神障害者であることを利用して同情を買い彼氏を作ったがすぐオナホとして捨てられた事故物件レイパー山口敬之のちんぽをしゃぶり
興奮するレイプに憧れる子宮ゴキブリ製造変態キチガイ妖怪ババアは
トラックで轢き殺してゴキブリババア精神障害者ゴキブリ害虫ミンチにしろ
誰にも惜しまれずうんこ垂れ流しながら死ぬトレパク精神障害者姫クソみうんこババアの
アヘ顔に奇形妖怪プレデターのような死に面に失笑
395:132人目の素数さん
19/02/27 01:40:19.81 HY4PnDBE.net
1, 4, 12, 26, 48, 76, 114, 152, 206, 252, 318, 382, 458, 544, 622, ...
この数列を表す式は?
396:132人目の素数さん
19/02/27 08:14:54.55 U5zQSFV3.net
QtVL76gh09U
文化盗用ヒトモドキニホンザルゴキブリ死滅しろゴキブリ邪悪国家アメ公シロンボゴキブリの糞シラミ
397:132人目の素数さん
19/03/03 02:08:19.87 nlgWuAjD.net
>>93
この文章痛すぎてワロタ
398:低学歴脱糞老女・清水婆婆の連絡先:葛飾区青戸6-23-19
19/03/03 09:48:08.91 KV/cokeJ.net
【超悪質!盗聴盗撮・つきまとい嫌がらせ犯罪者の実名と住所を公開】
①井口・千明(東京都葛飾区青戸6-23-16)
※盗聴盗撮・嫌がらせつきまとい犯罪者のリーダー的存在/犯罪組織の一員で様々な犯罪行為に手を染めている
低学歴で醜いほどの学歴コンプレックスの塊/超変態で食糞愛好家である/醜悪で不気味な顔つきが特徴的である
②宇野壽倫(東京都葛飾区青戸6-23-21ハイツニュー青戸202)
※色黒で醜く太っている醜悪黒豚宇野壽倫/低学歴で人間性が醜いだけでなく今後の人生でもう二度と女とセックスをすることができないほど容姿が醜悪である
③色川高志(東京都葛飾区青戸6-23-21ハイツニュー青戸103)
※色川高志はyoutubeの視聴回数を勝手に短時間に何百何千時には何万回と増やしたり高評価・低評価の数字を一人でいくつも増やしたり減らしたりなどの
youtubeの正常な運営を脅かし信頼性を損なわせるような犯罪的業務妨害行為を行っています
※色川高志は現在、生活保護を不正に受給している犯罪者です/どんどん警察や役所に通報・密告してやってください
【通報先】
◎葛飾区福祉事務所(西生活課)
〒124-8555
東京都葛飾区立石5-13-1
℡03-3695-1111
④清水(東京都葛飾区青戸6-23-19)
※低学歴脱糞老女:清水婆婆 ☆☆低学歴脱糞老女・清水婆婆は高学歴家系を一方的に憎悪している☆☆
清水婆婆はコンプレックスの塊でとにかく底意地が悪い/醜悪な形相で嫌がらせを楽しんでいるまさに悪魔のような老婆である
⑤高添・沼田(東京都葛飾区青戸6-26-6)
※犯罪首謀者井口・千明の子分/いつも逆らえずに言いなりになっている金魚のフン/親子孫一族そろって低能
⑥高橋(東京都葛飾区青戸6-23-23)
※高橋母は夫婦の夜の営み亀甲縛り食い込み緊縛プレイの最中に高橋親父にどさくさに紛れて首を絞められて殺されそうになったことがある
⑦長木義明(東京都葛飾区青戸6-23-20) ※日曜日になると風俗店に行っている
399:132人目の素数さん
19/03/04 01:43:18.30 3/A8OgAM.net
>>385
自明な収束半径とか加法と積で両方のゼロ元とか説明できるの?あんたの方は
400:132人目の素数さん
19/03/06 01:37:11.05 NbL5V/vt.net
(選択公理を仮定しないとして)
濃度の比較に全射ではなく単射を用いるのは何故ですか?
単射より全射を用いた方が比較できる範囲がより広くて良いと思うんですが
濃度を比較すること自体より単射でどこまで比較できるか、ということが重要なんですか?
401:132人目の素数さん
19/03/06 03:02:50.52 GHD55lnW.net
単射はダブりがないですよね
全射で比較しようとすると必然的にダブりが出てきます
扱いにくいですね
402:132人目の素数さん
19/03/06 14:09:48.62 NbL5V/vt.net
ダブるというのはx≠yに対してf(x)=f(y)になるということ?
それが扱いにくいというのは、集合の大小を比較した後さらに何かしようとした際に扱いにくいということ?
403:132人目の素数さん
19/03/06 17:10:50.86 z4/V+CK/.net
単射から逆方向の全射を作ることはできるが
選択公理なしでは全射から逆方向の単射を作ることができない
404:132人目の素数さん
19/03/06 19:19:57.73 bu6lsTAE.net
続けたまえ
405:132人目の素数さん
19/03/07 03:02:41.58 mA/DRyCb.net
>>391
集合の大きさの比較をしたいなら(X→Yの単射がなくても)Y→Xの全射があればX≦Yと定義してもいいように思うのですが
そうすると何か不都合があるのかなというのが疑問です
406:132人目の素数さん
19/03/07 03:28:33.99 NFV2OaUH.net
ですからダブりが出ますよね
単純な大小比較はそれでいいかもしれないですが、もっと細かい議論をしたいときに不便ですよね
407:132人目の素数さん
19/03/07 05:41:41.13 mA/DRyCb.net
濃度については、ルベーグ積分で加算
408:個の点は測度0というときくらいしか使われ方を知らないので、不便さが実感できないのですが 例えば何をするときに不便なのでしょうか?
409:132人目の素数さん
19/03/07 06:16:23.51 NFV2OaUH.net
濃度が推移律を満たすことを証明するときとかですね
単射なら一意に決まりますけど、全射だと一意に決まりませんね
議論がややこしくなるだけなんですよ
410:132人目の素数さん
19/03/07 06:20:43.70 NFV2OaUH.net
AからBへの単射が存在することと、BからAへの全射が存在することは同じことですから、どちらを使っても構わないです
どちらが扱いやすいかという話ですね
411:132人目の素数さん
19/03/07 06:24:31.89 NFV2OaUH.net
推移律は別にどちらも同じでしたね
>>391の例とかなんですかね
412:132人目の素数さん
19/03/07 12:08:17.98 OCyzNqU9.net
>>393
「X≦YかつY≦X⇒XとYの間の全単射が存在」
という命題を考えます
≦を単射で定めている場合は選択公理なしで示せます(Bernsteinの定理、易しい証明はwikipediaにもあります)
≦を全射で定めている場合は選択公理なしだと示せないことが知られています(URLリンク(www.math.sci.ehime-u.ac.jp))
413:132人目の素数さん
19/03/07 13:47:32.29 zzx0DvHd.net
答えてやっても理解できない奴のために説明追加したんだね
414:132人目の素数さん
19/03/07 15:14:54.62 TVoNUVmm.net
700
415:132人目の素数さん
19/03/07 23:03:01.04 mA/DRyCb.net
>>399
「濃度が同じ」を全単射ではなく双方向に全射があるということで定義すれば問題無いように思いますが駄目なんでしょうか
ちゃんと
X~Y、Y~ZならX~Z
X~Y、Y≦ZならX≦Z
のような関係は満たしますし
416:132人目の素数さん
19/03/08 03:11:43.70 32ERPA+I.net
>>402
選択公理がない状況では、「|X|=|Y|⇔全単射X→Yが存在」を満たす割り当てX→|X|として濃度を定めるのが普通だと思います
このような濃度の構成は少し工夫が必要です
「駄目なんでしょうか」という質問でしたが、そもそも、何を濃度と呼ぶべきかといった話は数学的にはそれほど重要ではないと考えます
大事なのは、選択公理がない状況では「単射による比較」と「全射による比較」を区別しなければならないという点であり、どちらを濃度の比較に使うべきかという点ではありません
もちろん、この他にも濃度に関する性質の違いはたくさんあります
417:132人目の素数さん
19/03/08 03:39:56.73 yF8u9Q10.net
>>403
>何を濃度と呼ぶべきかといった話は数学的にはそれほど重要ではないと考えます
>大事なのは、選択公理がない状況では「単射による比較」と「全射による比較」を区別しなければならないという点であり、どちらを濃度の比較に使うべきかという点ではありません
というのは仰るとおりだとおもいます。
ただ、本質的では無いにしても、単射を用いた濃度の定義が一般的なのには
濃度を用いた発展的な議論において、単射を用いて定義されていることが便利な状況が頻繁にあるから、といった背景があるのではという推測もできるので
その推測が正しいのかどうか、またもしそういう状況があるのなら具体例を知りたいなぁという次第です
418:132人目の素数さん
19/03/08 14:30:47.79 65S4eSv1.net
すでに答えられてるのに何を言ってんだろ
419:132人目の素数さん
19/03/08 15:11:07.36 32ERPA+I.net
>>404
「有限集合は全単射による同型を除いて位数により決定される」という事実を踏まえて、それを無限集合に拡張するというのが濃度の気持ちです
なので「|X|=|Y|⇔全単射X→Yが存在」(*)という要請はもっともらしいと思います
また、割り当てX→|X|を具体的に与えてそれを濃度と定義することも自然だと思います
(集合の比較だけで濃度を定めようと考えているように読み取れたので念の為)
選択公理を認める場合は順序数を使って定義できますね
選択公理を認めない場合でも(*)を満たす割り当てX→|X|は存在します
さて、濃度の比較には単射によるものと全射によるものが考えられます
順序集合のことを考えると
「|X|≦|Y|かつ|Y|≦|X|⇔|X|=|Y|」
が成立することが自然だと思います
単射による比較であれば選択公理が無くてもこれは成立します(>>399)
以上より、濃度に対しては単射による比較を考えることがより自然であるといえます
あなたのレスを読んでいると、集合の比較を決めることから出発しているように見えますが、濃度の本来の出発点は(*)です(文献によっては異なるかもしれませんが)
どちらの比較の方がより便利か、という話ではなく、(ここで定めた)濃度に対しては単射による比較の方が適しているというだけです
全単射の代わりに「双方向に全射が存在する」という同値関係を考えることはできますが、それは濃度とは異なる概念というだけで、どちらの方が優れているといったものではありません
2つの同値関係を比較することには意味があります
420:糞レス代行業
19/03/18 18:11:09.45 E88KcBgx.net
代行レスはここへ
スレリンク(operatex板:747番)
421:132人目の素数さん
19/03/18 19:02:09.13 yW1GrFOq.net
URLリンク(i.imgur.com)
「この右辺はθにつき一様収束するから」というのは、なんでですか?
422:132人目の素数さん
19/03/27 10:54:18.70 g2WuIoUT.net
複素関数論の授業で
e^iπ=-1ってのをやってるんですがどうしても腹落ちしません
これって結局のところ
複素数の指数関数をどう定義するかの話で、
それっぽく定義したらたまたまそうなっただけってことですよね?
なんてことを考えてたらそもそも(高校の時に習った)指数関数そのものがそれっぽく定義しただけじゃん?って思いはじめて
いろいろ考えを整理してみたのですが
そもそもの出発点として
整数の指数を考える→ゼロ乗をうまく定義することで負の整数乗も考えることができる
→指数法則が成り立つ→指数法則が成り立つようにうまく有理数の指数を定義する
→指数法則が成り立つようにうまく無理数の指数を定義する
→結果実数の指数が定義できた
ここまでが高校の範囲で、そこから
指数法則が成り立つように複素数の指数を”うまく”定義した
その結果がe^iπ=-1という理解であってますか?
何が疑問かというと
昔の偉い人が複素数の指数をもっと別の形で定義していた場合は
e^iπ=-1ではなかったからある意味たまたまなんじゃないか?という点です
423:132人目の素数さん
19/03/27 11:26:22.71 kBy6urPr.net
その通りだと思いますよ
424:132人目の素数さん
19/03/27 14:33:53.87 92W7aiuj.net
他の定義じゃ良くなかったんだから、たまたまなわけねーよ
自分で苦労してない奴はダメだね
425:132人目の素数さん
19/03/27 15:43:03.33 qNhHKMha.net
実数の指数関数に対しては概ねあってると思うけど、複素数の指数関数に対しては俺の認識と違うかな
複素数の指数関数は出発がe^iπ=-1
これはe^xに対するマクローリン展開(xは実数)とsinx、cosxに対するマクローリン展開から割と簡単に導かれるe^ix=cosx+isinxのx=πの時の結果だね
ここに虚数の定義を除いて新たな定義はない
そして純虚数の指数関数e^ix=cosx+isinxから複素数の指数関数e^(a+ib)=e^a(cosb+isinb)が導出出来てそこから議論が発展してくのよ
426:132人目の素数さん
19/03/27 16:14:56.91 g2WuIoUT.net
>>411
>他の定義じゃ良くなかった
正確には(昔の人がいろいろ模索した中で)他の定義じゃ良くなかった ですよねこれ
現在用いられている定義よりより良いものがまだ見つかってないだけで存在するかもしれませんし
>ここに虚数の定義を除いて新たな定義はない
e^x、sinx、cosxのマクローリン展開でxにixを入れてる瞬間、
実質的に純虚数の指数関数、三角関数を定義してることになってると思うのですがどこか間違ってます?
いろいろ本を読むと”xのところにixを形式的に代入する”みたいな枕詞ついていてキッチリした定義ではない空気感は出てるのですが
427:132人目の素数さん
19/03/27 16:15:26.35 g2WuIoUT.net
>>412
>ここに虚数の定義を除いて新たな定義はない
e^x、sinx、cosxのマクローリン展開でxにixを入れてる瞬間、
実質的に純虚数の指数関数、三角関数を定義してることになってると思うのですがどこか間違ってます?
いろいろ本を読むと”xのところにixを形式的に代入する”みたいな枕詞ついていてキッチリした定義ではない空気感は出てるのですが
428:132人目の素数さん
19/03/27 16:31:13.99 nozc7gfL.net
>>414
解析函数としての拡張は一意だから、どうやろうが大した問題ではない
解析接続の性質として関数関係は保�
429:カされるから、「形式的代入」は立派に厳密な方法
430:132人目の素数さん
19/03/27 16:37:02.42 04Ww6Kec.net
数学の需要が高まる。
政府、AI人材年25万人育成へ 全大学生に初級教育
URLリンク(r.nikkei.com)
政府が策定する「AI戦略」の全容が分かった。人工知能(AI)を使いこなす人材を年間25万人育てる新目標を掲げる。文系や理系を問わず全大学生がAIの初級教育を受けるよう大学に要請し、社会人向けの専門課程も大学に設置する。
ビッグデータやロボットなど先端技術の急速な発達で、AI人材の不足が深刻化している。日本の競争力強化に向け、政府が旗振り役を担う。
目玉に据えるのが高等教育へのAI教育の導入だ。年間約50万人いる全ての大学生や高等専門学校生(高専)に初級水準のAI教育を課す。
最低限のプログラミングの仕組みを知り、AIの倫理を理解することを求める。受講した学生には水準に応じた修了証を発行し、就職活動などに生かしやすくする。
そのうち25万人は、さらに専門的な知識を持つAI人材として育成する。初級水準の習得に加え「ディープラーニング」を体系的に学び、機械学習のアルゴリズムの理解ができることを想定する。
「AIと経済学」や「データサイエンスと心理学」など、文系と理系の垣根を問わず、AIを活用できるよう教育を進める。
431:132人目の素数さん
19/03/27 17:21:18.05 jOmMV+Uw.net
>>413
> 現在用いられている定義よりより良いものがまだ見つかってないだけで存在するかもしれませんし
解析関数としての複素数への拡張が一通り以外に存在しないことは証明されている
そこから、
> ”xのところにixを形式的に代入する”
だけで、
> キッチリした定義
になることも導かれる
432:132人目の素数さん
19/03/27 19:06:59.11 ANsPdIFw.net
e^xの級数展開を用いて複素数上の関数に拡張しただけでしょ
433:132人目の素数さん
19/03/27 19:21:06.02 Qja01kCm.net
その「拡張しただけ」以外の正則関数となる拡張が存在しないという話
434:132人目の素数さん
19/03/27 19:50:56.97 g2WuIoUT.net
>>415
>>417
解析関数としての複素数への拡張が一通り
という点について質問です
e^x、sinx、cosxは実数の世界では微分可能な関数
→
複素数に拡張する場合その性質を保存したい
→
マクローリン展開の定義を採用すると、実際複素平面上のすべての点で解析的(正則)
この時点では他に拡張のやり方があるかもしれないが一旦採用
もし別の拡張方法があったとしても、実軸上では一致している
→
一致の定理によって実軸上以外の領域でも一致していることがわかる
という理解であってますか?
435:132人目の素数さん
19/03/27 20:01:59.41 Mq4WPQ4F.net
あってます
436:132人目の素数さん
19/03/27 20:51:15.28 qtMxvx7U.net
C: 複素数全体
R: 実数全体
Q: 有理数全体
Z: 整数全体
N: 自然数全体
使用例. 1 ∈ N ⊂ Z ⊂ Q ⊂ R ⊂ C.
437:132人目の素数さん
19/03/28 12:45:54.90 kHK+pxz/.net
代数的数とかp進数とかは?
438:132人目の素数さん
19/03/28 13:18:50.58 7V7i5F5w.net
えるエル@learn_learning3 18 時間前
線形代数の講義名を「AI基礎I」,微積の講義名を「AI基礎II」,確率・統計の講義名を「AI基礎III」,
普通のプログラミング演習をPythonにして「AI演習」にすれば,たちまち講義の受講者が爆増し(元々�
439:K修とか言わない), ドロップアウト率が減り,対外的にはAI教育をしている先端大学になれる リツイート 742 いいね 1,453
440:132人目の素数さん
19/03/28 14:53:55.92 dISuNBxT.net
頭おかしいのかな?
441:132人目の素数さん
19/03/29 03:28:22.16 D9OCAulj.net
3次元CGを学ぶには数学のどの分野を勉強していけばいいの?
442:132人目の素数さん
19/03/29 12:15:04.15 znHbgFN4.net
まず3次元CGを学んでから考えればいいのではないでしょうか
野球やりたいのにまず筋トレ勉強する人はいないでしょう
443:132人目の素数さん
19/03/29 17:17:09.18 rJakbGFz.net
線型代数でいいだろ
444:132人目の素数さん
19/03/29 17:28:44.10 tXftdzlf.net
(4)
z = f(x, y) が微分可能で、 x = x(u, v), y = y(u, v) が偏微分可能ならば、
z = f(x(u, v), y(u, v)) は偏微分可能で、
∂z/∂u = (∂z/∂x) * (∂x/∂u) + (∂z/∂y) * (∂y/∂u)
∂z/∂v = (∂z/∂x) * (∂x/∂v) + (∂z/∂y) * (∂y/∂v)
が成り立つ。
(4)は松坂和夫著『解析入門中』に書いてあります。
(2)と(4)はどっちがいいんですかね?
445:132人目の素数さん
19/03/30 04:19:12.93 7NXcGK9K.net
U⊂R^kとV⊂R^lはともに開集合
(定義)f:U→Vが滑らか
⇔すべての偏導関数が存在して連続
より一般に滑らかとは
X⊂R^k、Y⊂R^l は任意の部分集合
(定義)f:X→Yが滑らか
⇔各点x∈Xに対してxを含む開集合U⊂R^kとU∩X全体でfと一致する滑らかな写像F:U→R^lが存在する
とありますが一般に滑らか の方の定義だと、んなわけないはずなんですが、どんな写像も滑らかになるような気がしてなりません
例えばf(x)=|x|も x=0のところで開集合をU=(-ε,ε)、滑らかな写像をF(x)=x^2でとれば、U∩X={0}上で確かにF(0)=f(0)=0になり、x=0以外では普通に滑らかなので
結果として滑らかな写像といえる気がします。
絶対どこかおかしいはずなのですが、教えて頂けませんか。
446:132人目の素数さん
19/03/30 04:22:48.27 7NXcGK9K.net
>>430
いや書いてから思ったけどFは値域が開集合じゃないから滑らかじゃないじゃん
447:132人目の素数さん
19/03/30 04:39:22.79 7NXcGK9K.net
>>431
開集合から開集合でない滑らかな写像の例を教えてほしいです
448:132人目の素数さん
19/03/30 10:06:15.89 WQke6gPb.net
Yの閉包とれば開集合から閉集合への写像になりますね
微分はある点の開近傍があって欲しいんですね
端っこがあってはその部分では微分できないですから
だから、普通は微分操作を考えるときは、開集合に限定するんですよ
449:132人目の素数さん
19/03/30 12:46:11.64 kpmkPuK2.net
全射でなくてもいいよ
450:132人目の素数さん
19/03/30 18:22:34.33 7NXcGK9K.net
あーなるほど
ピンときました ありがとうございます!
451:132人目の素数さん
19/03/31 10:06:39.40 pd4YzCEG.net
age
452:132人目の素数さん
19/04/01 17:29:07.45 uO/OR8ja.net
零和?
453:132人目の素数さん
19/04/04 11:30:23.65 NAu0zbrT.net
マクローリン
454:132人目の素数さん
19/04/04 13:01:09.19 Y2Og0zC+.net
テイラー
455:132人目の素数さん
19/04/05 23:27:05.89 SqSkgFXR.net
線形代数学の質問です
Vを体K上の有限次元のベクトル空間とします
このとき、Vとその双対空間V*が同形であることの証明として次の2つがありました
(1)V上の非退化のスカラー積<,>を持ってきてL_v(w)=<v,w>とすることにより、すべてのv∈VとL_v∈V*を一対一で対応させることができる
⑵V上の非退化の双線形形式gを持ってきて
L_v(w)=g(v,w)とすることにより、すべてのv∈VとL_v∈V*を一対一で対応させることができる
定義からしてスカラー積は双線形形式の一部ですが、上の2つからすべてのスカラー積と双線形形式を一対一で対応させることができるということになりませんか?矛盾しているように感じるのですがどうなんでしょう?
456:132人目の素数さん
19/04/05 23:52:05.98 Exv120OS.net
なるほど分からん
457:132人目の素数さん
19/04/06 00:20:32.27 RUX1Sj4e.net
どうして上の証明でスカラー積と双線型形式が一対一に対応するん?
458:132人目の素数さん
19/04/06 00:28:52.30 2mlFQCcB.net
あ、なるほど確かにおかしいですね
V*と<,>およびgが対応すると勝手に勘違いしてました...
ご指摘ありがとうございました
459:132人目の素数さん
19/04/06 00:30:46.67 vykf3+IM.net
いや、対応するってことになりますよね
なんか変ですよ
460:132人目の素数さん
19/04/06 01:59:06.49 nJJreb3s.net
スカラー積が(au,v)=(u,av)=a(u,v)を満たす???
と思ったら内積のことね
……え、それでなんで対応するの?
461:132人目の素数さん
19/04/06 02:13:06.82 eCQutw1c.net
スカラー積(内積)は正定値だが、非退化な双線型形式は正定置とは限らんやん
462:132人目の素数さん
19/04/06 02:49:43.79 p3Z5IPS+.net
リースの表現定理の話かと思ったが違うな
463:132人目の素数さん
19/04/06 13:12:49.71 hbufx8cN.net
Vを2次元とか3次元とかにして、具体例を考えると分かると思います
464:132人目の素数さん
19/04/06 14:09:21.36 BmpaXcBQ.net
α*g(t)*(1-α)f(T-t)dT
こういうαと(1-α)に掛け算に出来る形をなんていうんだっけ?
465:132人目の素数さん
19/04/06 15:55:39.51 QYyXORnP.net
>>449
畳み込みのことを言いたいの?
466:132人目の素数さん
19/04/06 22:13:19.78 BmpaXcBQ.net
>>450
そんな単語を見たような気がする
一か月ぐらい前にちょっと齧って投げ出してそのまま忘れていたのを
さっき似たような式でふと思い出したけどうろ覚えで
なにかわかんなかったので聞いたんだわ
どもども
467:132人目の素数さん
19/04/07 08:42:00.58 KedGAur7.net
てすと
468:132人目の素数さん
19/04/11 08:43:35.63 sOi/aYpb.net
無限級数の収束、発散についての質問です。下記の画像の問題の2番(問題2-2)の解き方を教えて下さい。
自分なりに考えた解き方ですが、
与式の第n部分和は、S[n]=(1/r)+{(1+r)/(r^2)}+{(1+r+r^2)/(r^3)}+...+[{1+r+r^2+...+r^(n-1)}/(r^n)]となるので、
r=1のとき、r≠1のとき(0<r<1、r>1)で場合分けをしてそれぞれ極限(n→∞)を求め、与式の収束、発散を調べる。
(i)r=1のとき
S(n)=(1/1)+{(1+1)/1}+{(1+1+1)/1}+...+[{1+1+1+...+1(n-1)}/(1^n)]
=1+2+3+...+[{1+1+1+...+1(n-1)}/(1^n)]
=(1/2)*n(n+1)
∴ lim(n→∞)S(n)
=lim(n→∞)(1/2)*n(n+1)
=+∞
よって、r=1のとき、与式は正の無限大に発散する。
↑これで合ってますか?
(ii)r≠1のとき
S(n)=(1/r)+{(1+r)/(r^2)}+{(1+r+r^2)/(r^3)}+...+[{1+r+r^2+...+r^(n-1)}/(r^n)]
=(1/r)+{(1/r)+(1/r^2)}+{(1/r)+(1/r^2)+(1/r^3)}+...+{(1/r)+(1/r^2)+(1/r^3)+...+(1/r^n)}
0<r<1、r>1で場合分けして与式の収束、発散を求める。
これ以降どのように式を計算し、0<r<1、r>1について、与式の収束、発散をどのように求めればよいか分かりません。
大変長くなりましたが、よろしくお願いします。
URLリンク(i.imgur.com)
469:132人目の素数さん
19/04/11 10:58:23.39 kGpqEuwC.net
何これ???
470:132人目の素数さん
19/04/11 15:11:40.46 Eso7m7UG.net
>>453
Σを使わないで表記するメリットは少ないので、Σのまま変形したほうがいいよ
r=1の場合は正しい
r≠1の場合はΣのまま計算を進めていけば分かるはず
471:132人目の素数さん
19/04/11 16:38:50.33 RuT7qQsx.net
r≠1のとき和を求めてしまうのはあまり利口じゃないと思う
472:132人目の素数さん
19/04/11 16:54:55.66 sOi/aYpb.net
>>455
アドバイスありがとうございます。r=1の場合については正しいとのことで、安心しました。
Σを使わないで表記するメリットは少ないので、Σのまま変形した方がよいとは�
473:ヌういうことでしょうか? 部分和を使用しない方がよいのでしょうか?そしてそれは何故ですか? r≠1の場合はΣのまま計算を進めていけば分かるとのことですが、Σのままどう計算すればよいか(どう式変形すればよいか)分かりません。
474:132人目の素数さん
19/04/11 16:56:50.30 sOi/aYpb.net
>>456
アドバイスありがとうございます。
r≠1のとき和を求めてしまうのはあまり利口じゃないとのことですが、それは何故ですか?