18/08/01 21:42:34.65 fUopbB/R.net
↑これが数学板の実力です↑
専門板なのに異常にレベルが低い
せいぜい数学の少しできる高校生レベル
530:132人目の素数さん
18/08/01 21:52:55.73 yK6pXi/o.net
NGID:fUopbB/R
531:132人目の素数さん
18/08/01 22:49:34.39 VZ3sWgTl.net
D が閉集合であるとき、 D と closure(Int(D)) の関係は一般にどんなものか?
532:132人目の素数さん
18/08/01 22:52:22.93 VZ3sWgTl.net
>>501
closure(Int([a_1, b_1] × … × [a_n, b_n])) = [a_1, b_1] × … × [a_n, b_n]
を示せ。
533:132人目の素数さん
18/08/02 01:37:12.62 ACGviExS.net
アンドリュー・ワイルズとNASAで最も賢い研究者はどっちの方が賢いですか?
534:132人目の素数さん
18/08/02 01:52:55.15 Fre00JeF.net
桃とスイカと梨を、全部で3個買います。
1つも選ばないものがあってもよいとすると、全部で何通りの選び方があるでしょう。
これを解く式を教えて下さい
535:132人目の素数さん
18/08/02 01:57:03.58 ACGviExS.net
全知全能の究極至高超絶絶頂極限神と無はどっちの方が凄いですか?
536:132人目の素数さん
18/08/02 03:05:26.40 3qObk5kB.net
>>518
シンプルな難問ですね
その店に合計n個の(桃、スイカ、梨)があるとして、
nC0からnC3までを足して、それを∫[0→3] x(1-x) dxで割ってください。
最後にnに3を代入してください
537:132人目の素数さん
18/08/02 04:14:54.77 XNOYdggT.net
>>496
a>0,
Max{a/√2,(√2)/a} = coth(2c),
とする。 n>1 に対して
f_n = (√2)coth((2^n)c) → √2, (n→∞)
538:132人目の素数さん
18/08/02 04:22:48.67 XNOYdggT.net
>>496
g(x) = xx -2 にニュートン法を使ったでござるな。
>>521
倍角公式
coth(2θ) = (1/2)(cothθ + 1/cothθ)
539:132人目の素数さん
18/08/02 07:00:51.70 n3f9mOLt.net
>>509
わからないときは数を減らして考えろ。
一試合に二つずつ出るんだから二倍しないと。
540:132人目の素数さん
18/08/02 07:55:13.19 GtVFRW6S.net
>>518
重複組み合わせでググれ
541:132人目の素数さん
18/08/02 11:25:24.44 5LqKc3SG.net
closure(Int([a_1, b_1] × … × [a_n, b_n])) = [a_1, b_1] × … × [a_n, b_n]
を示せ。
>>501
より
Int([a_1, b_1] × … × [a_n, b_n]) = (a_1, b_1) × … × (a_n, b_n)
であるから、
closure((a_1, b_1) × … × (a_n, b_n)) = [a_1, b_1] × … × [a_n, b_n]
を示せばよい。
x ∈ closure((a_1, b_1) × … × (a_n, b_n)) とする。
このとき、
x ∈ [a_1, b_1] × … × [a_n, b_n] ではないと仮定する。
仮定により、
x_i < a_i or b_i < x_i となるような i ∈ {1, …, n} が存在する。
542:132人目の素数さん
18/08/02 11:25:44.97 5LqKc3SG.net
x_i < a_i の場合を考える。
ε = a_i - x_i とおく。
y ∈ B(x ; ε) とする。
y_i - x_i ≦ sqrt((y_1 - x_1)^2 + … + (y_n - x_n)^2) < ε = a_i - x_i
∴
y_i < a_i
∴
y ∈ [a_1, b_1] × … × [a_n, b_n] ではない。
∴
y ∈ (a_1, b_1) × … × (a_n, b_n) ではない。
∴
x ∈ closure((a_1, b_1) × … × (a_n, b_n)) ではない。
これは仮定に矛盾する。
543:132人目の素数さん
18/08/02 11:26:10.22 5LqKc3SG.net
b_i < x_i の場合を考える。
ε = x_i - b_i とおく。
y ∈ B(x ; ε) とする。
x_i - y_i ≦ sqrt((y_1 - x_1)^2 + … + (y_n - x_n)^2) < ε = x_i - b_i
∴
-y_i < -b_i, b_i < y_i
∴
y ∈ [a_1, b_1] × … × [a_n, b_n] ではない。
∴
y ∈ (a_1, b_1) × … × (a_n, b_n) ではない。
∴
x ∈ closure((a_1, b_1) × … × (a_n, b_n)) ではない。
これは仮定に矛盾する。
544:132人目の素数さん
18/08/02 11:26:29.13 5LqKc3SG.net
∴
closure((a_1, b_1) × … × (a_n, b_n)) ⊂ [a_1, b_1] × … × [a_n, b_n] である。
545:132人目の素数さん
18/08/02 11:26:54.94 5LqKc3SG.net
逆に、
x ∈ [a_1, b_1] × … × [a_n, b_n] とする。
ε を任意の正の実数とする。
i ∈ {1, …, n} に対し、
x_i = a_i のとき、
y_i ∈ (a_i, b_i) ∩ (a_i, a_i + ε/sqrt(n))
x_i = b_i のとき、
y_i ∈ (a_i, b_i) ∩ (b_i - ε/sqrt(n), b_i)
a_i < x_i < b_i のとき、
y_i ∈ (a_i, b_i) ∩ {(x_i - ε/sqrt(n), x_i) ∪ (x_i, x_i + ε/sqrt(n))}
とし、 y := (y_1, …, y_n) とする。
明らかに、
|y_i - x_i| < ε/sqrt(n) が成り立つ。
sqrt((y_1 - x_1)^2 + … + (y_n - x_n)^2) < sqrt(n * (ε/sqrt(n))^2) = ε
以上から、
任意の正の実数 ε に対し、
y ∈ B(x ; ε) ∩ (a_1, b_1) × … × (a_n, b_n)
となるような y が存在する。
∴
x ∈ closure((a_1, b_1) × … × (a_n, b_n))
546:132人目の素数さん
18/08/02 12:22:50.28 RRXEEVFw.net
Int(A)=Aに含まれる最大の開集合=A-∂A
cl(A)=Aを含む最小の閉集合=A∪∂A
Dが閉集合なら
cl(Int(D))=D+∂D=D
547:132人目の素数さん
18/08/02 12:49:57.92 ttgSiwvk.net
E^2において一点集合Dは閉集合だが
closure(interior(D)) ≠ D
548:132人目の素数さん
18/08/02 14:30:03.16 3qObk5kB.net
任意の自然数a,bに対して
f(a,b)<√2<g(a,b)
かつ
「√2-f(a,b)<1/3 かつ g(a,b)-√2<1/3」
が成り立つような、定数でないa,bの有理式は存在しますか?
549:132人目の素数さん
18/08/02 14:32:30.70 /b0BSwha.net
>>529の y_i がいつでも取れるとは限らないってところがミスやね
a_i=b_i のとき、(a_i,b_i) は空
550:132人目の素数さん
18/08/02 14:35:14.74 5LqKc3SG.net
>>515
closure(Int(D)) ⊂ D
closure(Int(D)) は D からその孤立点を除去した集合。
551:132人目の素数さん
18/08/02 15:07:10.85 CON1W
552:NYv.net
553:132人目の素数さん
18/08/02 15:12:06.82 3qObk5kB.net
立方体の4頂点を結び正四面体Vを作る。
またVをある直線の周りに一回転させてできる立体をWとする。
立方体とWの共通部分の体積が最大となる直線のとり方を説明せよ。
554:132人目の素数さん
18/08/02 15:15:14.81 CON1WNYv.net
>>532
f(a,b) = 1/(a^2+b^2+1) * 0.00000000001 + 1.4142
g(a,b) = -1/(a^2+b^2+1) * 0.00000000001 + 1.4143
とか
555:132人目の素数さん
18/08/02 15:21:40.76 5LqKc3SG.net
>>515
closure(Int(D)) ⊂ D - {D の孤立点}
556:132人目の素数さん
18/08/02 15:25:17.93 CON1WNYv.net
>>536
最大値なし
557:132人目の素数さん
18/08/02 15:27:28.31 CON1WNYv.net
Xが離散位相空間のときXのすべての点は孤立点でclosure(interior(X)) = X。
558:132人目の素数さん
18/08/02 15:48:20.74 5LqKc3SG.net
>>515
closure(Int(D)) ⊂ D
559:132人目の素数さん
18/08/02 16:05:46.15 5LqKc3SG.net
Throughout, let X be a metric space with metric d
If U is an open set, what is the relation in general between
the set U and the interior of closure(U) ?
560:132人目の素数さん
18/08/02 16:33:38.99 5LqKc3SG.net
>>542
X = R
U = Int(U) かつ U ⊂ closure(U)
U = Int(U) ⊂ Int(closure(U))
U = (-1, 0) ∪ (0, 1)
closure(U) = [-1, 1]
Int(closure(U)) = (-1, 1) ≠ U
561:132人目の素数さん
18/08/02 16:34:14.94 5LqKc3SG.net
>>542
U = Int(U) かつ U ⊂ closure(U)
U = Int(U) ⊂ Int(closure(U))
--------------------------------
X = R
U = (-1, 0) ∪ (0, 1)
closure(U) = [-1, 1]
Int(closure(U)) = (-1, 1) ≠ U
562:132人目の素数さん
18/08/02 16:38:39.71 5LqKc3SG.net
Let f : X → Y. Show that f is continuous if and only if for each x ∈ X there is a neighborhood U of x such that
f|U is continuous.
563:132人目の素数さん
18/08/02 17:14:57.14 3qObk5kB.net
>>539
上限は立方体の体積に等しい?
564:132人目の素数さん
18/08/02 17:57:27.34 ttgSiwvk.net
直線と四面体の位置に制限がない。
565:132人目の素数さん
18/08/02 17:59:57.09 ttgSiwvk.net
いや、最大値あるね、
なんか、デタラメ詰将棋系くさいけど
566:132人目の素数さん
18/08/02 18:11:39.89 hISRJwlg.net
>>26
この問題の(1)について、
共有点がちょうど3つ存在する
⇔2つの放物線がx軸より下で接する
だと思ったのですが、
この予想の正否が分かる方はいますか?
おそらく、>>104さんはこの予想が正しいことを前提に解かれているのだと思いますが。
ちなみに私は高校3年生です。
567:132人目の素数さん
18/08/02 18:33:36.64 ttgSiwvk.net
>>549
それは明らかに正しいけどこの問題がデタラメ詰将棋系だと思われてるのはそこじゃない。
面積の小さい方がa.bのあたいに応じて変化して、片っ方はなんとかいけるけど、もう片方が全然綺麗な式にならん。
出題してるやつは多分山勘で綺麗に出る方の面積が小さいと思い込んでるんだと思う。
568:132人目の素数さん
18/08/02 19:06:58.52 hISRJwlg.net
ああ、y=(x-a)^2+bとx=y^2からxを消去した
4次方程式y=(y^2-a)^2+bが異なる3つの実数解を持つことが条件か
(x=y^2のグラフ上でy座標が同じになることはないため、
異なる実数解yの個数 = 共有点の個数)。
さらに、4次方程式の場合、
異なる3つの実数解 ⇔ 重解1つと異なる2実数解になるのか。
ただ、重解 ⇔ 接するが成り立つかは非自明だな。
569:132人目の素数さん
18/08/02 21:40:05.97 dgr6zwfG.net
>>470
知識ゼロの状態からだと
y''-y=0を解くとy=Ae^x+Be^(-x)
y=Ae^x+Be^(-x)+Ce^(αx)とおいてもうまくいかないから
y=Ae^x+Be^(-x)+u(x)e^(αx)とおくと
u''e^(αx)+2u'αe^(αx)+u(α^2)e^(αx)-ue^(αx)=e^x
⇔{u''+2u'α+u(α^2)-u}e^(αx)=e^x
よってα=1, u''+2u'=1
u''+2u'=0を解くとDe^(-2x)+E
u=De^(-2x)+E+Fx+Gとおくと
0+2F=1⇔F=1/2
以上より
y=Ae^x+Be^(-x)+(De^(-2x)+E+(1/2)x+G)e^x
=(A+E+G)e^x+(B+D)e^(-x)+(1/2)xe^x
=He^x+Ie^(-x)+(1/2)xe^x
解けたから満足
570:132人目の素数さん
18/08/02 22:12:23.26 KFEJtiya.net
ハーバード大学に首席合格したい。
571:132人目の素数さん
18/08/02 23:19:12.80 3qObk5kB.net
実数の列{a_n}は任意の自然数p,qに対して
|a_(p+q)-a_p-a_q|<1
を満たしている。
このとき、任意の自然数n,kに対して
|n*a_(n+k)-(n+k)a_n|<2(n+k)…(A)
が成り立つことを示せ。
追加問題
(A)をより厳しく評価せよ。
すなわち、任意のn,kに対して(A)の右辺を可能な限り小さくせよ。
572:132人目の素数さん
18/08/02 23:21:49.44 aXLu90aQ.net
失礼します
どうして停留点を求めた時以下の式になるのでしょう?
URLリンク(i.imgur.com)
573:132人目の素数さん
18/08/02 23:45:01.99 xnKNqrPM.net
次の山型の数列にパルカスの三角形のような規則性って何かあるでしょうか。
1
0, 0
1, 0, 1
0, 1, 1, 0
1, 0, 4, 0, 1
0, 2, 3, 3, 2, 0
1, 0, 9, 2, 9, 0, 1
0, 3, 6, 12, 12, 6, 3, 0
1, 0, 16, 8, 36, 8, 16, 0, 1
0, 4, 10, 30,41, 41, 30, 10, 4, 0
・・・・・・
574:132人目の素数さん
18/08/03 00:07:50.44 EmlLNZvo.net
>>554
|pa_q - qa_p| < p+q …(※)
を示せば十分。
I) max{p,q} = 1のとき。
p = q = 1だから左辺=0より成立。
II) max{p,q}<k で成立と仮定して max{p,q} = k とする。
p=qなら左辺=0より成立。
q>pのとき r=q-p とおく。
|pa_q - qa_p|
=|p(a_q - a_p - a_r) + r a_p - p a_r|
≦p|a_q - a_p - a_r| + |r a_p - p a_r|
<p + r + p
=p+q。
575:132人目の素数さん
18/08/03 01:24:35.22 tsbZKQGa.net
半径4の円Cに半径1の円Dが外接している。
Dは反時計回りにC上を滑ることなく転がり、はじめにCと接していた点であるD上の点Pが再びCと接したところで停止する。
点Pが描く曲線とCで囲まれる領域をKとする(KはCの外部である)。
Kに含まれる線分のうち最長のものをLとするとき、以下の問いに答えよ。
(1)以下の(a),(b)の真偽を判定せよ。
(a)Lは点Pが描く曲線と共有点を持つ
(b)LはCと共有点を持つ
(2)Lの長さを求めよ。
576:132人目の素数さん
18/08/03 01:58:19.46 oE4kF5bF.net
1点aで複素微分可能でも、その点で正則(aのある開近傍Uが存在し、fはU上で正則)でないことはありますか?
577:132人目の素数さん
18/08/03 01:59:34.05 tRRMlHHD.net
>>556
B(2n,2r) = C(n,r)^2
あとはよく分からん。あべのパルカス
578:132人目の素数さん
18/08/03 03:08:40.31 SxDX8OCS.net
>>559
f(z)=0 (z=0またはzが無理数)
1/n(Re(z)が有理数で、既約分数表示した時の分母がn)
とすると、f(z)はz=0で連続かつ微分可能ですが、z=0の任意の開近傍はRe(z)が有理数となる点が存在し、その点では連続ではなく微分可能でもありません
579:132人目の素数さん
18/08/03 03:36:51.46 oE4kF5bF.net
>>561
ありがとうございます
f'(0)の値は何ですか?
580:132人目の素数さん
18/08/03 10:52:25.49 SxDX8OCS.net
0ですね
581:132人目の素数さん
18/08/03 13:40:57.94 Pirwc60W.net
∫[0→1] 1/((1+x^3)^(1/3)) dxを教えて下さい
582:132人目の素数さん
18/08/03 13:48:02.99 6rYEsJmV.net
1,1,1,2で10を作ってください。
(この種の問題はご存知かと思いますが、文字同士は必ず演算を用い、1と2を1回ずつ使って12とするなどはやめてください。)
四則演算では不可能であると判明したので、そのほかの演算を適宜使ってください。
583:132人目の素数さん
18/08/03 13:57:19.25 tsbZKQGa.net
>>565
二項演算★を以下のように定義する
実数a,b(a<b)に対して
a★a=0
a★b=10
式中では加算記号と減算記号に優先する
すると
1★1+1★2=0+10=10
584:132人目の素数さん
18/08/03 13:58:58.30 iL59RBCB.net
>>566
わかりやすい
585:132人目の素数さん
18/08/03 14:48:15.88 uEg3jUPY.net
>>565
10 = [tan log |log √√√√√√√√√√√√√√√√√√ sin 1)|] + 1 + 1 - 2
586:132人目の素数さん
18/08/03 14:52:18.39 9XotD0/A.net
>1と2を1回ずつ使って12
この種の問題では当然に許可すべき
587:132人目の素数さん
18/08/03 16:41:08.70 mQsg6A/0.net
ヘッセ行列とは、勾配ベクトルをベクトル微分したもの、という解釈でも良いんでしょうか?
588:132人目の素数さん
18/08/03 17:17:18.39 kYekzqNA.net
>>565
(1+1+1)!/tanh(ln(2))
Binomial[CatalanNumber[1+1+1],2]
589:132人目の素数さん
18/08/03 19:02:27.57 tsbZKQGa.net
>>558
傑作です。
590:132人目の素数さん
18/08/03 19:36:04.71 BwKQdpjH.net
>>545
Let f : X → Y. Show that f is continuous if and only if for each x ∈ X there is a neighborhood U of x such that
f|U is continuous
f : X → Y が連続であると仮定する。
任意の x ∈ X に対して、 X は x の近傍であり、 f|X = f は連続である。
逆に、任意の x ∈ X に対して、 f|U が連続であるような x の近傍 U が存在すると仮定する。
x0 を X の任意の元とする。仮定により、 f|U が連続であるような x0 の近傍 U が存在する。
f|U は x0 で連続だから、任意の正の実数 ε に対して、
d_U(x, x0) < δ ⇒ d_Y(f(x), f(x0)) < ε
となるような正の実数 δ が存在する。
U は X の開集合だから、 {x ∈ X | d_X(x, x0) < δ1} ⊂ U となるような正の実数 δ1 が存在する。
δ2 := min(δ, δ1) とおく。
{x ∈ X | d_X(x, x0) < δ2} ⊂ U だから、
{x ∈ X | d_X(x, x0) < δ2} = {x ∈ U | d_U(x, x0) < δ2} である。
d_U(x, x0) < δ2 ⇒ d_Y(f(x), f(x0)) < ε だから、
d_X(x, x0) < δ2 ⇒ d_Y(f(x), f(x0)) < ε である。
∴
f : X → Y は連続である。
591:132人目の素数さん
18/08/03 19:47:51.24 BwKQdpjH.net
Let X = A ∪ B, where A and B are subspaces of X. Let f : X → Y;
suppose that the restricted functions
f|A : A → Y and f|B : B → Y
are continuous. Show that if both A and B are closed in X, then f is continuous
592:132人目の素数さん
18/08/03 20:31:49.37 3idna+6E.net
Stupid guy
593:132人目の素数さん
18/08/03 20:33:25.53 QRGAtQK1.net
Go hang yourself.
594:132人目の素数さん
18/08/03 21:52:47.16 BwKQdpjH.net
杉浦光夫著『解析入門I』を読んでいます。
p.170
例6
例7
におかしなところがあります。
例えば、例6ですが、
「
Σz^(2*n) / (2*n)! では、 a_(2*n+1) = 0, a_(2*n) = 1 / (2*n)! であり、
この場合 lim |a_n / a_(n+1)| は存在しない。
」
と書いてありますが、数列 {a_n / a_(n+1)} 自体が定義できないわけですから、
lim |a_n / a_(n+1)| も定義できないわけです。存在するしない以前の問題です。
595:132人目の素数さん
18/08/03 22:34:42.40 asTwelNd.net
NASAで最も賢い研究者と、科挙(一番難しい時代の)に一発且つ首席且つ最年少で合格した人はどっちの方が賢いですか?
596:132人目の素数さん
18/08/03 22:48:03.01 BwKQdpjH.net
>>574
Let X = A ∪ B, where A and B are subspaces of X. Let f : X → Y;
suppose that the restricted functions
f|A : A → Y and f|B : B → Y
are continuous. Show that if both A and B are closed in X, then f is continuous
X = (A - B) ∪ (B - A) ∪ (A ∩ B) (直和) である。
(A - B) ∪ B = X かつ B は X の閉集合だから、 A - B は X の開集合である。
(B - A) ∪ A = X かつ A は X の閉集合だから、 B - A は X の開集合である。
A, B は X の閉集合だから、 A ∩ B は X の閉集合である。
x0 を X の任意の元とする。
(1) x0 ∈ A - B の場合
(2) x0 ∈ B - A の場合
(3) x0 ∈ A ∩ B の場合
に場合分けして考える。
597:132人目の素数さん
18/08/03 22:48:
598:34.70 ID:BwKQdpjH.net
599:132人目の素数さん
18/08/03 22:48:53.59 BwKQdpjH.net
(2) x0 ∈ B - A の場合
B - A は X の開集合だから、 {x ∈ X | d_X(x, x0) < δ1} ⊂ B - A となるような正の実数 δ1 が存在する。
ε を任意の正の実数とする。
f|B : B → Y は連続だから、
d_B(x, x0) < δ2 ⇒ d_Y(f(x), f(x0)) < ε となるような正の実数 δ2 が存在する。
δ := min(δ1, δ2) とおく。
{x ∈ X | d_X(x, x0) < δ} ⊂ B - A ⊂ B だから、
{x ∈ X | d_X(x, x0) < δ} = {x ∈ B | d_B(x, x0) < δ} である。
また d_B(x, x0) < δ ⇒ d_Y(f(x), f(x0)) < εである。
∴
d_X(x, x0) < δ ⇒ d_Y(f(x), f(x0)) < εである。
∴
f : X → Y は連続である。
600:132人目の素数さん
18/08/03 22:49:10.25 BwKQdpjH.net
(3) x0 ∈ A ∩ B の場合
ε を任意の正の実数とする。
f|A : A → Y
f|B : B → Y
は連続だから、
d_A(x, x0) < δ1 ⇒ d_Y(f(x), f(x0)) < ε
d_B(x, x0) < δ2 ⇒ d_Y(f(x), f(x0)) < ε
となるような δ1, δ2 が存在する。
δ := min(δ1, δ2) とおく。
明らかに、
{x ∈ A | d_A(x, x0) < δ} ∪ {x ∈ B | d_B(x, x0) < δ} = {x ∈ X | d_X(x, x0) < δ}
である。
x ∈ {x ∈ A | d_A(x, x0) < δ} ⇒ d_Y(f(x), f(x0)) < ε
x ∈ {x ∈ B | d_B(x, x0) < δ} ⇒ d_Y(f(x), f(x0)) < ε
であるから、
x ∈ {x ∈ X | d_X(x, x0) < δ} ⇒ d_Y(f(x), f(x0)) < ε
である。
∴
f : X → Y は連続である。
601:132人目の素数さん
18/08/03 23:04:19.67 Do86lxx7.net
17万円のうちの2万円って何パーセント?
602:132人目の素数さん
18/08/03 23:53:13.70 Qc3hZ1MO.net
科挙一発首席最年少合格者とマキシム・コンツェビッチはどっちの方が賢い?
603:132人目の素数さん
18/08/04 01:17:58.33 h2IIZ7/S.net
p匹の動物をグループ分けする。
1グループあたりq匹とし、rグループに分ける。
このとき何種類の組み合わせができるか。
動物はそれぞれ識別できるものとする。
グループは区別ができないものとする。
グループ分けの際に動物が余る場合もある。
604:132人目の素数さん
18/08/04 02:27:29.73 O25WHJ4j.net
>>585
「グループ分けの際に動物が余ることもある」をもうちょっと厳密に説明してくれ
605:132人目の素数さん
18/08/04 02:31:58.92 O25WHJ4j.net
m,nを自然数とする。
n個の箱にmn個のボールをでたらめに投げ入れる。
ボールが1つも入っていない箱が2箱できる確率p(m,n)をmとnで表せ。
また極限
lim[m→∞] p(m,n)/p(m+1,n)
を求めよ。
606:132人目の素数さん
18/08/04 02:50:50.77 ZD/Bfk7m.net
>>564
x = e^(-t) とおく。
(与式) = ∫[0,∞] 1/{1+e^(3t)}^(1/3) dt
= 0.937706990575338860724827668651595924153015324648714996550033613124860660612273505440145297648734359
>>576
「逝ってよし」
>>583
11.7647 %
607:132人目の素数さん
18/08/04 03:15:11.12 ZD/Bfk7m.net
>>565
[ √{2/tan(1゚)} ] *1 *1
[ √{1/tan(1゚)} ] +1 +2
[ √{1/tan(2゚)} ] *(1+1)
608:132人目の素数さん
18/08/04 03:27:27.24 ZD/Bfk7m.net
>>565
[ exp(1+1+1) ] ÷ 2
[ exp(2+1) ] ÷ (1+1)
[ exp(2) ] +1 +1 +1
[ exp(1) + exp(1) + exp(1) ] +2
609:132人目の素数さん
18/08/04 05:51:07.04 Tryplpe/.net
>>577
定義できるけど存在しない
ってどういう状況なのかね?
610:585
18/08/04 06:49:42.46 h2IIZ7/S.net
>>586
p≧q×rという意味です。
たとえば9匹のマウスを、1グループあたり2匹ずつ、3グループに分けると3匹余ります。
他の条件としては下の2つがあります。
q≧1の自然数
r≧1の自然数
p:動物の総数
q:グループの数
r:1グループあたりの動物の匹数
611:132人目の素数さん
18/08/04 08:03:29.14 W7N0ST8g.net
>>587
C[n,2]((1-2/n)^mn - C[n - 2,1](1-3/n)^n + ‥)/C[n,2] ry
612:132人目の素数さん
18/08/04 08:50:38.76 LrWC+2Ba.net
>「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。
連続体仮説以外にこのような命題の例ってあるのでしょうか?
613:132人目の素数さん
18/08/04 09:47:14.96 5HaTOLT5.net
まず選択公理が浮かばないのはどうなん
614:132人目の素数さん
18/08/04 10:23:33.07 5kgzeyFd.net
>>450
解答が汚い
↓以下のようにシンプルに解答できる
v∈Vは、v=f(g(v))+(v-f(g(v)))と書ける。
g(v-f(g(v)))=g(v)-g(f(g(v))=g(v)-g(v)=0
615:だからv-f(g(v))∈Ker(g) v=f(u)∈Im(f)∩Ker(g)とすると、0=g(v)=g(f(u))=u。よって、v=f(u)=f(0)=0
616:132人目の素数さん
18/08/04 10:24:06.37 g/wipP8S.net
中学1年生数学の問題
丸暗記は簡単だが意味がわらからないので詳しく教えて
URLリンク(i.imgur.com)
617:132人目の素数さん
18/08/04 10:29:09.65 5kgzeyFd.net
>>468
非積分函数=(1-x^2)^{-1/2}*(-2*x)*(-1/2) + 2*1/√(1-x^2)
618:132人目の素数さん
18/08/04 10:53:41.44 VblSSaDK.net
Let f : X → Y and g : Y → Z
Let x_0 be a limit point of X and
let y_0 be a limit point of Y
Consider the following three conditons:
(i) f(x) → y_0 as x → x_0
(ii) g(y) → z_0 as y → y_0
(iII) g(f(x)) → z_0 as x → x_0
(a) Give an example where (i) and (ii) hold, but (iii) does not
619:132人目の素数さん
18/08/04 11:04:28.97 VblSSaDK.net
>>599
f : R → R
f(x) = 0 for all x ∈ R
g : R → R
g(y) = 0 for all y ∈ R - {0}
g(0) = 1
f(x) → 0 as x → 0
g(y) → 0 as y → 0
but
g(f(x)) → 1 as x → 0
620:132人目の素数さん
18/08/04 11:05:41.27 VblSSaDK.net
Let f : X → Y and g : Y → Z
Let x_0 be a limit point of X and
let y_0 be a limit point of Y
Consider the following three conditons:
(i) f(x) → y_0 as x → x_0
(ii) g(y) → z_0 as y → y_0
(iII) g(f(x)) → z_0 as x → x_0
(b) Show that if (i) and (ii) hold and if g(y_0) = z_0, then (iii) holds.
621:132人目の素数さん
18/08/04 11:14:51.17 9bRCG7ss.net
>>597
どっちでも良いです
622:132人目の素数さん
18/08/04 11:36:56.24 yqmN+2Wy.net
>>602
有難うございます
そうするとこの問題自体が問題として成り立っていないと言うことでしょうか?
623:132人目の素数さん
18/08/04 11:39:20.41 9bRCG7ss.net
>>603
そのまま答え書くわけにもいきませんから、もし聞かれたらそういう風に書き直せば良いでしょう
624:132人目の素数さん
18/08/04 12:55:36.96 O25WHJ4j.net
平面上に直方体Tが置かれ、その辺の長さの比はa:b:cであるという。
平面上にあるTの一つの頂点を選び、そこを通る平面上の直線lを考える。
lの周りにTを一回転させてできる立体の体積をV_lとし、lを色々変化させるとき、体積比
{min(V_l)}/{Max(V_l)}
の値を求めよ。
625:132人目の素数さん
18/08/04 13:07:06.32 K+zoubgx.net
>>594
古いところではユークリッド幾何の平行線公理
626:132人目の素数さん
18/08/04 13:07:35.07 O25WHJ4j.net
空間の平面z=0上に円Cがある。
円Cの内部の点P(x,y,0)における方べきの値をz_Pとし、点Q(x,y,z_P)を考える。
PをC内で動かすとき、Qが動いてできる図形は回転放物面の一部であることを示せ。
(補足)本問で点Pにおける方べきの値とは、Pを通るある直線とCとの2つの交点をA,Bとしたときの、線分長の積PA・PBのことである。
627:132人目の素数さん
18/08/04 13:42:57.77 BZ9gQcLz.net
z_P = r^2 - |OP|^2
628:132人目の素数さん
18/08/04 13:47:38.51 O25WHJ4j.net
文字列A:aaaaaaに対し、以下の操作『T』を繰り返し行う。
『T』:文字列Aから1つの文字を無作為に選ぶ。
それが「a」であるならば「bb」に置き換え、それが「b」であるなら削除する。
Tをn回行ったときの文字列Aの長さの期待値をE(n)とするとき、以下の極限が収束するかどうかを述べよ。
収束する場合はその極限値を述べよ。
lim[n→∞] E(n)
(補足)
『T』を2回行って、1回目では左から2番目の「a」が選ばれ、2回目でら左から3番目の「b」が選ばれた場合、
aaaaaa→abbaaaa→abaaaa
となる。
629:132人目の素数さん
18/08/04 14:21:27.87 BZ9gQcLz.net
文字列きえたらT行えないじゃん
aaaaaa→bbbbbbbbbbbb→空
630:132人目の素数さん
18/08/04 14:42:44.97 5MQrEZdu.net
2a-1<√x<3a-1 a,x∈N を満たすx�
631:ェ17個の時のaの値
632:132人目の素数さん
18/08/04 15:28:04.60 VblSSaDK.net
>>601
W を z_0 = g(y_0) を含む Z の任意の開集合とする。
g(y) → z_0 as y → y_0 だから
y_0 を含むような Y の開集合 V で、
g(V - {y_0}) ⊂ W
となるようなものが存在する。
g(y_0) = z_0 ∈ W だから、
g(V) ⊂ W
である。
f(x) → y_0 as x → x_0 だから
x_0 を含むような X の開集合 U で、
f(U - {x_0}) ⊂ V
となるようなものが存在する。
g(f(U - {x_0}) ⊂ g(V) ⊂ W
であるから、
g(f(x)) → z_0 as x → x_0
である。
633:132人目の素数さん
18/08/04 15:53:29.03 O25WHJ4j.net
>>610
長さ0
634:132人目の素数さん
18/08/04 15:54:00.85 ZD/Bfk7m.net
>>564
∫[0→x] 1/{(1+x'^3)^(1/3)} dx' = x・F(1/3,1/3;4/3|-x^3)
F(a,b;c|z) は超幾何級数 (hyper-geometric function)
635:132人目の素数さん
18/08/04 15:56:12.93 VblSSaDK.net
Let f : R → R be defined by setting f(x) = sin(x) if x is rational, and f(x) = 0 otherwise.
At what points is f continuous?
636:132人目の素数さん
18/08/04 16:01:10.91 VblSSaDK.net
>>615
{π * n | n ∈ Z}
637:132人目の素数さん
18/08/04 16:44:37.75 W7N0ST8g.net
>>613
そんな事聞いてんじゃない。文字選べなかったらTは出来ないと言ってる。問題文の吟味が雑いんだよ。
638:132人目の素数さん
18/08/04 17:20:50.50 EVl9uXLt.net
>>604
これ中学の定期テストの問題なんです。
なぜ、まだ計算できる状態の式に戻すのか、それが「式を簡単にする」事なのか。
どうやっても腑に落ちません
URLリンク(i.imgur.com)
639:132人目の素数さん
18/08/04 17:25:19.72 xpgQhtt/.net
>>618
先生に聞け
それか問題用紙の実物を画像で上げろ
640:132人目の素数さん
18/08/04 17:41:18.25 9bRCG7ss.net
>>618
処世術ってやつですよ
そういうもんなんだな、でいいじゃないですか
そのまま問題と同じ答え書いても意味ないんですから、何かしら書き換えないといけないわけです
641:132人目の素数さん
18/08/04 18:01:20.95 Ubw8oDop.net
>>618
その教師の、数式における項の書き順や符号の位置へのこだわりなのだろう。
642:132人目の素数さん
18/08/04 18:43:34.15 VblSSaDK.net
4つの面に 1 から 4 の数字の書かれた正四面体の形をしたサイコロがある。
このサイコロを5回振る。
i回目に出た目の数を i の位の数とし、5桁の整数 X を作る。
X に数字1と数字2がちょうど1回ずつ現れる確率を求めよ。
この問題に対する解答ですが、以下のように書いてあります:
解答:
「
5回の操作で、数字1と数字2がちょうど1回ずつ現れる場合の数は
Binomial(5, 1) * Binomial(4, 1) = 20 (通り)あり、
」
5回の操作で、数字1と数字2がちょうど1回ずつ現れる場合の数は、
Binomial(5, 1) * Binomial(4, 1) * 2^3
ですよね?上の解答は間違っていますよね?
ちなみに上の解答はチャート式の赤いやつの解答です。
ひどい参考書です。
643:132人目の素数さん
18/08/04 18:49:04.16 dnhPuN6B.net
8 8 3 5
で10にする。って問題です。
よろしくお願い申し上げます。
644:132人目の素数さん
18/08/04 18:53:04.29 VblSSaDK.net
ところで、質問ですが、
独立試行、反復試行の確率というのがあります。
これらの確率はすべて、
事象 A の起こる場合の数 / 起こりうるすべての場合の数
で計算できます。
なぜ各試行の確率の積でわざわざ計算するのでしょうか?
同じことですよね?
645:132人目の素数さん
18/08/04 19:13:48.34 EVl9uXLt.net
>>619
>>620
>>621
ありがとうございます
結局のところ深く考えても仕方ないのですね
担当教師に聞いてみます
646:132人目の素数さん
18/08/04 19:20:56.40 xpgQhtt/.net
8+√(8/(5-3))=10
647:132人目の素数さん
18/08/04 19:26:56.19 dnhPuN6B.net
>>626
ありがとうございます。
648:132人目の素数さん
18/08/04 19:51:31.81 U/6JsNI2.net
ちなみに>>585は
(tCm×(t-m)Cm×...×(t-m(g-1))Cm)/g!
であってますか?
649:132人目の素数さん
18/08/04 19:57:33.63 W7N0ST8g.net
合ってない
650:132人目の素数さん
18/08/04 20:18:41.68 U/6JsNI2.net
失礼しました!
(pCq×(p-q)Cq×...×(p-q(r-1))Cq)/r!
でした!
651:132人目の素数さん
18/08/04 20:38:53.74 W7N0ST8g.net
合ってる希ガス
652:132人目の素数さん
18/08/04 20:49:45.56 rFWXxMVs.net
>>631
ありがとうございます!
数年ぶりの数学だったので助かりました!
653:132人目の素数さん
18/08/04 21:20:57.66 W7N0ST8g.net
>>609
の問題どう操作を選んでも18回でから文字列に到達するから答えは0なんだけど、
問題勘違いしてΣE(n)計算してた。
どうもaがx文字、bがy文字からスタートするとΣE(n)は
5/2*x^2 +3/2*x + (2*x+1)*y + y*(y-1)/2-x
になるみたい。整数値。ちょっと面白かった。
654:132人目の素数さん
18/08/05 00:38:46.00 xMCzGduU.net
プログラムを作る上で数学の知識が必要なのですが
rの値を求める式を作りたいです
URLリンク(i.imgur.com)
Hは定数です
gとWはプログラムによって状況ごとに変わるのですが
いずれにしても絶対に直角三角形の形になります
なのでピタゴラスの定理が使えると思うのですが
頭が悪くてr=の式に治すことが出来ません
(右辺からrを無くして、左辺はrだけにしたい)
どなたか解ける人いますでしょか
655:132人目の素数さん
18/08/05 00:56:36.59 Kh2s9L1e.net
>>634
(g-1)^2を両辺にかけてまとめると
r^2×(g^2-2g)+2hr-h^2-w^2×(g-1)^2=0
となるので二次方程式の解の公式からrについて解くって感じじゃないでしょうか
656:132人目の素数さん
18/08/05 02:11:48.29 rWEeASLy.net
>>611
2a-1 ≦ √x ≦ 3a-1,
x は (2a-1)^2 から (3a-1)^2 まで。
5aa -2a +1 = 17
(a-2)(5a+8) = 0
5a+8>0 ゆえ a=2.
657:132人目の素数さん
18/08/05 02:14:47.57 iKoqeWa/.net
文字列A:aaaaaaに対し、以下の操作『T』を繰り返し行う。
『T』:
文字列Aから1つの文字を無作為に選ぶ。
それが「a」であるならば「ab」に置き換え、それが「b」であるなら削除する。
Tをn回行ったときの文字列Aの長さの期待値をE(n)とするとき、以下の極限が収束するかどうかを述べよ。
収束する場合はその極限値を述べよ。
lim[n→∞] E(n)
(補足)
『T』を2回行って、1回目では左から2番目の「a」が選ばれ、2回目でら左から3番目の「b」が選ばれた場合、
aaaaaa→aabaaaa→aaaaaa
となる。
658:132人目の素数さん
18/08/05 03:48:11.41 iKoqeWa/.net
√6/4と(√33-1)/8のうち、大きい方をA、小さい方をBとする。
不等式
0.599<B+p<0.6<A-p<0.601
を満たす有理数pのうち、pを既約分数で表したときの分母の桁数が最も小さいものを1つ求めよ。
659:132人目の素数さん
18/08/05 04:16:07.32 xMCzGduU.net
>>635
ありがとうございます
なんとかいけました
660:132人目の素数さん
18/08/05 04:56:03.60 rWEeASLy.net
>>638
A = (√6)/4 = 0.6123724357
B = (√33 -1)/8 = 0.59307033
0.599 < B+(p/2) < 0.6 < A-p < 0.601
0.0113724357 < p < 0.0123724357
0.011859338 < p < 0.013859338
0.011859338 < p < 0.0123724357
80.824829 < 1/p < 84.3217361
p = 1/81
661:132人目の素数さん
18/08/05 09:13:08.96 hRb7cZuC.net
>>594
公理は全部そうだけど?
662:132人目の素数さん
18/08/05 10:59:23.46 qoYtIdek.net
神と全はどっちの方が凄いですか?
663:132人目の素数さん
18/08/05 11:07:06.35 ypSlRSXe.net
人が「神」と呼ぶものの正体は、ただの詐欺師です。
すごいも糞もありません。
664:132人目の素数さん
18/08/05 11:14:01.63 hTph5mP9.net
>>641
わからないんですね
665:132人目の素数さん
18/08/05 11:37:56.94 7pNk9PQ8.net
馬鹿だろ
666:132人目の素数さん
18/08/05 11:45:33.16 IeT7OVJx.net
公理は証明可能です
667:132人目の素数さん
18/08/05 11:47:52.94 N9cUwZq/.net
転職対策で学生の時以来、久々にSPIの勉強始めたんだけど解くのに時間がかかりすぎる
あの頃より暗算能力が格段に落ちているし、頭の中でイメージしたものが持続せず消えてしまう
紙に書かないといけないから時間がかかる
30代になるとこんなもんかね?
地アタマの良い人ってブランクあってもスパスパ解けるもんなの?
*スレチすまん
668:132人目の素数さん
18/08/05 12:15:06.33 hRb7cZuC.net
>>646
公理からねw
669:132人目の素数さん
18/08/05 13:14:05.45 qoYtIdek.net
数学者とデイトレーダーはどっちの方が凄いですか?
670:132人目の素数さん
18/08/05 13:32:52.04 UTRYBnUN.net
この計算であってるか確認してほしいです。
URLリンク(i.imgur.com)
671:132人目の素数さん
18/08/05 13:39:07.89 qoYtIdek.net
宇宙はカスですか?
672:132人目の素数さん
18/08/05 14:16:00.34 UTRYBnUN.net
計算間違えてました
これで合っていますよね?
難しいのは分かっているので、考察だけでも構いませんからお願いします。
URLリンク(i.imgur.com)
673:132人目の素数さん
18/08/05 14:25:27.37 XuYlCfgN.net
最初とラストを見ただけで間違いと断言できる
674:132人目の素数さん
18/08/05 14:28:29.02 UTRYBnUN.net
>>653
いや等式で全て結んでいるので、自分の中では論理的帰着だと思っています
具体的にどこが間違っているかはわかりますか?
675:132人目の素数さん
18/08/05 14:43:33.57 nfGsoC+a.net
有限回の部分積分から無限級数に飛躍してるけど、その級数の収束性は確かめた?
676:132人目の素数さん
18/08/05 14:55:56.35 aMW4LVQB.net
全=無
ですか?
677:623
18/08/05 15:37:03.06 oXwxv+q5.net
8 8 5 3 を10にする問題を提起したものです。
中学2年の問題でルートは使えません。
再度お願いします。
678:132人目の素数さん
18/08/05 16:01:40.40 ed3lb8T9.net
URLリンク(www.quiz-puzzle.com)
679:132人目の素数さん
18/08/05 16:26:02.74 up1xysk+.net
スレチならすいません
この問題の解き方を教えてくれると嬉しいです
URLリンク(i.imgur.com)
680:132人目の素数さん
18/08/05 16:37:09.48 0zXjkStl.net
VをK上のn次元ベクトル空間、AをKを係数とするn次正則行列とする
e_1,...,e_nがVの基底のとき、Ae_1,...,Ae_nもVの基底となることを示して下さい
681:132人目の素数さん
18/08/05 16:47:36.58 sCTKA/UM.net
>>657
(3-8÷8)×5
682:132人目の素数さん
18/08/05 16:48:34.57 UTRYBnUN.net
>>655
あ、確かめてないです
やってみたら発散しました
683:623
18/08/05 17:56:12.30 oXwxv+q5.net
>>661
ありがとうございます。
684:132人目の素数さん
18/08/05 18:52:06.35 nfGsoC+a.net
>>660
(Aeiの線形結合)=0
⇔A(eiの線形結合)=0
⇔(eiの線形結合)=0
⇒ei=0
685:132人目の素数さん
18/08/05 19:08:00.78 iKoqeWa/.net
平行六面体Vの各面の重心を結んでできる立体が正八面体であるとき、Vは立方体であることを示せ。
686:132人目の素数さん
18/08/05 19:17:46.20 iKoqeWa/.net
すべての面が三角形からなる八面体Vにおいて、6つの面は正三角形であるという。
(1)Vは正八面体と言えるか。
(2)正三角形の一辺の長さをaとするとき、Vの体積がとる値の範囲を求めよ。
687:132人目の素数さん
18/08/05 19:26:13.57 iKoqeWa/.net
√2は有理数であるという誤った前提のもとで議論を進めた場合、(1)(2)の結果が得られるかどうか判定せよ。
(1)整数nで、無理数であるものが存在する。
(2)2と互いに素な自然数mで、√mが有理数であるものが存在する。
688:132人目の素数さん
18/08/05 19:37:00.45 iKoqeWa/.net
自然数nは、1とnを含む10個の約数を持つ。また小さい順に数えて5番目の約数は20である。
nの最大値を求めよ。
689:132人目の素数さん
18/08/05 19:44:21.71 6jO1BPaT.net
>>665
平行6面体を立方体に移すAffine変換を f とする。
元の6面体の面の重心の凸包は
690:像の6面体の面の重心の凸包にうつるが仮定によりいずれも正八面体である。 よって元の8面体の対角線のなすベクトルは像の8面体の対角線のなすベクトルにうつる。 よって f は3次直交変換の定数倍である。 特にもとの平行6面体は立方体である。
691:132人目の素数さん
18/08/05 19:45:58.75 6jO1BPaT.net
>>667
(1) 得られる。
(2) 得られる。
692:132人目の素数さん
18/08/05 19:47:29.14 6jO1BPaT.net
>>666
(1)言えない。
(2)0<V≦正8面体の体積。
693:132人目の素数さん
18/08/05 19:49:09.26 6jO1BPaT.net
>>668
解無し。
694:132人目の素数さん
18/08/05 19:58:17.16 6jO1BPaT.net
>>671
(2)撤回します。
695:132人目の素数さん
18/08/05 20:02:51.07 J/FuPh6S.net
>>659
コンピュータで総当りでやったら、27/256になった。
5秒後に初めてだと81/1024.
696:132人目の素数さん
18/08/05 20:19:35.69 J/FuPh6S.net
>>659
N秒後に初めて出会う確率は 3^(N-1)/(2^N)^2 みたいだな。
解析的には誘導できないけどw
697:132人目の素数さん
18/08/05 20:45:10.12 vG/LHtfN.net
>>664
2行目と3行目の同値はなぜですか?
698:132人目の素数さん
18/08/05 20:49:45.89 vG/LHtfN.net
>>676
自己解決しました
ありがとうございました
699:132人目の素数さん
18/08/05 21:00:18.78 FL9Nra4+.net
Kを有理数体、Fをx^6-1の最小分解体とする
拡大次数[F:K]とガロア群Gal(F/K)を求めよ
700:132人目の素数さん
18/08/05 21:11:33.62 +aSV6r2A.net
URLリンク(i.imgur.com)
(1)について、複素数の累乗や因数分解などの可否は実数のそれに準じるのでしょうか?実数なら簡単に解けそうなのですが…
(2)は解答の方針が立てられずにいます。教えて頂ければ幸いです
701:132人目の素数さん
18/08/05 21:39:21.00 6jO1BPaT.net
>>678
Gal(F/K) は2次巡回群。
なにこれ?
702:132人目の素数さん
18/08/05 21:47:13.14 FL9Nra4+.net
>>678
>>680
ありがとうございます!
ごめんなさい、いま間違いに気づきました
x^6-1ではなくx^6-8でした
試験の過去問のです
703:132人目の素数さん
18/08/05 21:50:14.35 6jO1BPaT.net
>>679
(1)実数のそれと同じ
(2)siを固有多項式のi次対称式として
e2 = e1s1 - 2s2 。
2 = 2^2 - 2s_2。
∴ s2 = 1。
e3 = e2s1 - e1s2 +3s3。
8 = 2^2 -2 + 3s3。
∴s3 = 2。
704:132人目の素数さん
18/08/05 21:53:51.76 ckvNuLOn.net
全&無軍の総司令官とシェルバーン家当主はどっちの方が凄いですか?
705:132人目の素数さん
18/08/05 22:00:24.71 6jO1BPaT.net
>>681
ω=exp(2π/3 i)としてF=Q(√2, ω)。
Gal(F,Q(ω)) = <g> で g(√2) = -√2 でgは位数2。
Gal(F,Q(√2)) = <h> で h(ω) = -ω でhは位数2。
この2つがGal(F/Q)を生成してるからGal(F/Q)は位数2の巡回群2つの直積(Kleinの4 group)。
706:132人目の素数さん
18/08/05 22:02:33.28 ckvNuLOn.net
人工知能に「無限」に関する問題を与えたらどういう反応を示すのでしょうか?
707:132人目の素数さん
18/08/05 22:13:52.71 FL9Nra4+.net
>>684
理解しました!
ありがとうございます!
708:132人目の素数さん
18/08/05 22:38:08.45 nfGsoC+a.net
>>677
書いてから気づいたけど、もちろん>>664の最後の行は(eiの係数)=0ね
709:132人目の素数さん
18/08/05 23:02:28.67 lTMCAktJ.net
3次直交行列Aに対して、
1.Aの行列式が1のとき、Aは固有値に1を持つことを示せ。
2.1.を満たすAに対し、3次実正則行列Pと実数θが存在して、PAP^-1が以下のようになることを証明せよ。
(1 0 0)
(0 cosθ -sinθ)
(0 sinθ cosθ)
(括弧の上下は繋がっています)
よろしくお願いします
710:132人目の素数さん
18/08/05 23:03:02.56 +aSV6r2A.net
>>682
ありがとうございます
711:132人目の素数さん
18/08/06 01:03:31.11 yIlbKmyY.net
>>674
全然理解出来ませんが公式?でも表すことできるんですね
スレチっぽいのにわざわざありがとうございました!
712:132人目の素数さん
18/08/06 01:22:55.42 840AtD1X.net
>>666
(1)
11辺の長さが1で、1辺だけ1でない(1+2sinθ)ような三角形8面体Vが存在する。
6頂点を (0,±1/2,0) (cosθ,±(1/2 + sinθ),0) (b,0,±h) とする。
ただし、b = (1+sinθ)/(2cosθ), h = √(3/4 - bb),
(2)
底面積は S = (1+sinθ)cosθ,
体積は V = (2/3)Sh,
713:132人目の素数さん
18/08/06 01:46:07.41 840AtD1X.net
>>691
-30°< θ < 30°
θ = -30°で辺長0になり
θ = 30°で平面上にのる。(h=0)
714:132人目の素数さん
18/08/06 02:14:45.97 840AtD1X.net
>>691 >>692
S(θ) = (1+sinθ)cosθ,
V(θ) = (2/3)S(θ)h(θ)
θ = arcsin(1/8) = 0.125327831 のとき
最大値 V(θ) = (9√3)/32 = 0.48713929
なお、正八面体(θ=0)のときは V(0) = (√2)/3 = 0.47140452
>>668
n = pq^4,
p,qは相異なる素数。
約数は{1,q,q^2,q^3,q^4,p,pq,pq^2,pq^3,pq^4=n} 順不同
715:132人目の素数さん
18/08/06 02:27:02.29 GfIreBYA.net
n個の自然数a_1,a_2,...,a_nがある。
これらの相異なるk個の和(k=1,2,...,n)をとることで、a_1から(a_1+a_2+...+a_n)までのすべての自然数が得られるという。
a_1,...,a_nが満たすべき条件を述べよ。
ただし「相異なるa_m1個の和」とは、a_mそのものを指す。
716:132人目の素数さん
18/08/06 07:38:10.57 PDFtrC+O.net
>>668 は解無しやろ?
>また小さい順に数えて5番目の約数は20である。
だから20の倍数じゃないと行けないけど、すると
1,2,4,5,10,20
が少なくとも約数になるから20が5番目になることはない。
こんな整数に関する問題、簡単に十分性のチェックできるのに。
答えが “必ずある” 受験問題解きすぎるとこうなる。
717:132人目の素数さん
18/08/06 07:58:20.19 PDFtrC+O.net
>>694
こんなん答えでるん?
たとえば1,2,4,8,…は解として8抜いて7に入れ替えても条件みたす。
こんなもん死ぬほど自由度ありそうやけど??
718:132人目の素数さん
18/08/06 07:59:03.12 EqSbR0Sf.net
>>688をお願いします
719:132人目の素数さん
18/08/06 08:15:24.27 PDFtrC+O.net
>>688
R係数でいいならR係数直交行列はユニタリ行列でもあるから固有値の絶対値は1。
一方実係数3次行列は実の固有値もつ。
よってAは±1のいずれかを固有値としてもつ。
-1が固有値のときは-1の固有ベクトルの直交補空間をAは保存するが、そこでの作用も直交変換で行列式は-1。
よってその固有値はやはり実数(∵固有多項式の定数項が-1)かつ絶対値1となり固有値は±1。
1の固有ベクトルvの直交補空間をAは保存するが、そこでの作用も直交変換で行列式は1。
このときP^-1v = (1,0,0)^tとなるPをとれば条件をみたす。
720:132人目の素数さん
18/08/06 08:44:03.99 +pIbr1Ke.net
>>636
ありがとうございました!
721:132人目の素数さん
18/08/06 09:21:19.11 EqSbR0Sf.net
>>698
ありがとうございます
右下の2×2θ行列が出てくることはどうすれば示せるでしょうか?
722:132人目の素数さん
18/08/06 09:22:19.57 D2dpSuwE.net
>>696
そいつ適当な問題書いてるだけじゃないかな
723:132人目の素数さん
18/08/06 10:52:26.30 v0jMK/82.net
>>696
数学の文章としてもおかしいよね。
a1‥を数列として扱ってるのか、集合として扱ってるのかも不明。
前半では数列っぽく、1、1、1、2、3、‥もありに思えるけど、後半では相異なるとか言ってるからなしにも見える。
数学やってる人間なら誰もがひっかかりそうな、そこはハッキリさせとかんとダメ
724:やろというポイントがキチンと押さえられてない。
725:132人目の素数さん
18/08/06 11:02:18.71 FAPEP58f.net
【 天 皇 即 位 阻 止 】 儲けた金は…35億、プチエンジェル事件、顧客リストに徳仁皇太子の名
スレリンク(liveplus板)
726:132人目の素数さん
18/08/06 11:41:57.08 p6mfxN28.net
>>702
え?
727:132人目の素数さん
18/08/06 12:04:51.72 ljRNKyCN.net
自明でない順序環は無限集合になることの証明を教えて下さい
また自明でない順序環でかつ"任意の空でない正の元の集合は最小値をもつ"という性質は整数全体を特徴づけますか?
728:132人目の素数さん
18/08/06 12:05:51.70 840AtD1X.net
>>693
20 がnの約数だから、nは素因数 2,5 をもつ。
∴ n=q^9 は除いた。
729:132人目の素数さん
18/08/06 13:21:11.00 GfIreBYA.net
f(x)はxの多項式で、係数はすべて整数とする。
方程式f(x)=0がcos(π/11)を解に持つことはあるか。
ある場合、そのようなf(x)の中で次数が最も低いものを1つ求めよ。
730:132人目の素数さん
18/08/06 14:17:20.65 GfIreBYA.net
半径1の円に内接する正n角形と正(n-1)角形がある。2つの共通部分の面積の最小値をSnとおくとき、次の極限が0でない実数に収束する有理数pの値を求めよ。
lim[n→∞] (n^p)*(Sn-π)
731:132人目の素数さん
18/08/06 14:34:06.14 GfIreBYA.net
定積分
∫[0→1] 1/{1+x^(2n)} dx
の値をI_nとする。
超越数でない実数a_nを用いて
I_n=(a_n)*π^(b_n)
と表すとき、b_n=1となるnをすべて求めよ。
無数に存在する場合、それらすべてを決定せよ
732:132人目の素数さん
18/08/06 14:44:54.48 GfIreBYA.net
どの2つの要素も相異なる自然数である2つの無限集合A,Bがある。
Aの要素を小さい順に並べたものをa_1,a_2,...とし、Bの要素を小さい順に並べたものをb_1,b_2,...とする。
このとき、A∩Bは空集合、A∪Bはすべての自然数を表す集合Nであり、かつ任意の自然数iに対してa_i=2b_iが成立するという。
このとき、「Aはすべての偶数からなる集合で、Bはすべての奇数からなる集合」であると言えるか。
言えるならばそのことを証明し、言えないならば反例を挙げよ。
733:132人目の素数さん
18/08/06 15:36:11.24 v0jMK/82.net
そんな集合ないやん。
必然的に1はB、2はA、3はBでa1=2, a2=6, b1=2, b2=3で4、5が入れられなくなる。
734:132人目の素数さん
18/08/06 15:42:35.27 v0jMK/82.net
>>709
被積分関数合ってる?
計算機でやったらどえらい事になるけど
735:132人目の素数さん
18/08/06 15:48:43.65 yoylAs4B.net
>>659
URLリンク(imagizer.imageshack.com)
736:132人目の素数さん
18/08/06 16:05:38.56 KLoNTCQ2.net
>>707
load("orthopoly");
quotient(chebyshev_t(5, x)+chebyshev_t(6, x),x+1);
32*x^5-16*x^4-32*x^3+12*x^2+6*x-1
737:132人目の素数さん
18/08/06 16:59:12.16 wkO6+GsO.net
宇宙船のパイロットと一流の弁護士はどっちの方が頭が良いですか?
738:132人目の素数さん
18/08/06 17:10:06.18 840AtD1X.net
cos(11θ) + 1
= (cosθ+1) {cos(11θ/2) / cos(θ/2)}^2
= (cosθ+1) {[sin(6θ) - sin(5θ)] / sinθ}^2,
より
T_11(x) + 1 = (x+1) {U_5(x) - U_4(x)}^2
= (x+1) (32x^5 -16x^4 -32x^3 +12x^2 +6x -1)^2,
第二種チェビシェフ多項式
U_4(x) = 16x^4 -12x^2 +1,
U_5(x) = 32x^5 -32x^3 +6x,
739:132人目の素数さん
18/08/06 17:13:29.06 840AtD1X.net
>>666 の類題
すべての面が三角形である四面体Tにおいて、2つの面は正三角形であるという。
(1) Tは正四
740:面体と言えるか。 (2) 正三角形の一辺の長さを1とするとき、Tの体積Vがとる値の範囲を求めよ。
741:132人目の素数さん
18/08/06 17:14:41.62 wkO6+GsO.net
小平邦彦と団藤重光はどっちの方が頭が良いですか?
742:132人目の素数さん
18/08/06 17:33:08.07 840AtD1X.net
>>717
(1)
5辺の長さが1で、1辺だけ1でないような三角形4面体Tが存在する。
4頂点を (0,±1/2,0) (b,0,±h) とする。
ただし、b = (√3)/2・sinθ,h = √(3/4 - bb) = (√3)/2・cosθ,
0 < θ < π/2,
(2)
底面積 S(θ) = b/2 = (√3)/4・sinθ,
高さ h(θ) = (√3)/2・cosθ
体積 V(θ) = (2/3)S(θ)h(θ) = (1/4)sinθ cosθ = (1/8)sin(2θ) ≦ 1/8.
等号成立は θ=45゚ のとき。
なお、正4面体のときは 2θ = arccos(-1/3) = 109.47122゚ (4面体角) で
V(θ) = (√2)/12,
743:132人目の素数さん
18/08/06 17:35:32.67 840AtD1X.net
>>666 >>717 の類題
すべての面が三角形である20面体Dにおいて、18の面は正三角形であるという。
(1) Dは正20面体と言えるか。
(2) 正三角形の一辺の長さを1とするとき、Dの体積Vがとる値の範囲を求めよ。
744:132人目の素数さん
18/08/06 17:46:44.63 840AtD1X.net
>>716
cos(11θ) + 1
= (cosθ+1) {cos(11θ/2) / cos(θ/2)}^2
= (cosθ+1) {[cos(6θ) + cos(5θ)] / (cosθ+1)}^2,
より
T_11(x) + 1 = (x+1) {[T_6(x) + T_5(x)]/(x+1)}^2
= (x+1) (32x^5 -16x^4 -32x^3 +12x^2 +6x -1)^2,
第一種チェビシェフ多項式
T_5(x) = 16x^5 -20x^2 +5x,
T_6(x) = 32x^6 -48x^4 +18x^2 -1,
745:132人目の素数さん
18/08/06 17:55:58.32 5QEO3vvy.net
アイザック・ニュートンは、ハーバード大学に首席入学できますか?
746:132人目の素数さん
18/08/06 20:53:20.78 /TB7f5/Y.net
方程式a^2+b^3=c^4は自然数解(a,b,c)を持つか。
747:132人目の素数さん
18/08/06 21:18:37.33 v0jMK/82.net
(a,b,c) = (27,18,9)
748:132人目の素数さん
18/08/06 22:01:35.68 7E7uLEWM.net
>>710 >>711
うそかいた。訂正。
条件みたすのはam,bmが条件
(a1,b1)=(2,1)
bm = min{n | n は a1~a(m-1)とb1~b(m-1)に現れない}
am = 2bm
を満たすときで一意
a:2,6,8,10,18,22,…
b:1.3.4.5.9,11,…
よって>>710の主張は成立せず反例は上記。
749:礼儀を弁えろ若造
18/08/07 00:46:15.64 Uo5YvH1r.net
>>722
ハーバードのどこなんや?
乳トンは株で失敗しているから、落選
750:132人目の素数さん
18/08/07 00:46:45.71 1rYLr1hO.net
>>724
早い
これ決まった見つけ方あるかな
751:132人目の素数さん
18/08/07 00:54:19.67 43d9wP5e.net
残念ながら計算機だより。
Prelude> [(a,b,c)|a<-[1..3000],b<-[1..3000],let c = truncate $ sqrt $ sqrt $ fromInteger $ a^2 + b^3,a^2 + b^3 == c^4]
[(27,18,9),(28,8,6),(63,36,15),(433,143,42),(648,108,36),(1176,49,35),(1728,288,72),(1792,128,48),(2925,126,57)]
752:132人目の素数さん
18/08/07 01:32:57.57 d0TLhZPi.net
Haskellはすぐ書けるのでいいですね
753:132人目の素数さん
18/08/07 01:57:14.05 aIKuwmz1.net
>>723 >>724
a^2:b^3:c^4 = 1:2^3:3^2
から
(a,b,c) = (27t^6,18t^4,9t^3)
754:132人目の素数さん
18/08/07 02:12:42.65 jEqDI1za.net
ここに書くのは適切かわからないので、とりあえず書いてレス見てみます。
検索しても見つからなかったので
答えが知りたい問題
1+1=2とする。というように、前提を決めて、それに基づいて物事を考えるやり方・考え方はなんと呼ぶのか?
昔、誰かから聞いて、その時はハッとして数学を学ぶキッカケになったはずなのですが、忘れてしまいました。
755:132人目の素数さん
18/08/07 02:19:35.59 d0TLhZPi.net
形式主義、公理主義、とかですか?
756:132人目の素数さん
18/08/07 02:24:08.46 jEqDI1za.net
>>732
ありがとうございます。形式主義でした!!
大学とかでは学ぶらしいのですが、自分はその�
757:ケには進みませんでしたのでよく覚えてなかったのです。 ここ数日の悩みが晴れました。 助かりました。 ありがとうございした。
758:132人目の素数さん
18/08/07 11:09:48.90 WsF5ORjN.net
>>723
正の整数x, y, zが
x^2 + y^3 = z^2を満たしているとする。
この両辺にz^6をかけると
x^2z^6 + y^3z^6 = z^8
∴(xz^3)^2 + (yz^2)^3 = (z^2)^4
よって(a, b, c) = (xz^3, yz^2, z^2)
x^2 + y^3 = z^2を満たすx, y, zは
y^3 = z^2 - x^2 = (z + x)(z - x)から簡単に求められる。
例: y = 2のとき2^3 = 4 * 2より
z = 3, x = 1
759:132人目の素数さん
18/08/07 12:33:02.26 0YHxo3zw.net
代数の教科書を読んでると
「体Eから体Fへの単射準同型が存在する場合、FはKを含んでいるとみなせる」
という議論をしばしば見るんですが、ぜんぜんみなせなくないですか?
たとえば、E→FのK準同型で、FはEの部分体Kを実際には含んでいなくて
K→Eの単射準同型が存在するだけだとしたら、K準同型はKの元は保存するという
前提で進めてきた議論が全部成り立たなくなると思うんですが。
760:132人目の素数さん
18/08/07 12:33:52.54 0YHxo3zw.net
「体Eから体Fへの単射準同型が存在する場合、FはEを含んでいるとみなせる」
の間違いでした。ごめんなさい。
761:132人目の素数さん
18/08/07 12:41:50.16 QCqAGpcR.net
>>753
もちろんいつでも見なさるわけではない。
場合によってはみなしてもよいというだけ。
修行をつんだ人間ならその手の命題について、なぜK⊂Lの場合に示せば十分であるのかは、ほぼ一瞬でわかる。
逆に言えばそういうのがちゃんとパッとわかるようになるまでは、一般の場合はどうすればいいのかをキッチリ確かめてみないとダメ。
762:132人目の素数さん
18/08/07 12:44:42.63 +qHI7aBJ.net
「体Eから体Fへの単射準同型が存在する場合、FはKを含んでいるとみなせる」
がウソってどんな場合?
763:132人目の素数さん
18/08/07 14:31:28.91 ivOIBeov.net
>>735
部分体と同型なんだから見なしてイイジャン
764:132人目の素数さん
18/08/07 17:26:35.47 4v8aQZ/h.net
>>734
これで方程式の解のすべてを表せるでしょうか?
765:132人目の素数さん
18/08/07 17:27:40.51 4v8aQZ/h.net
>>734
鮮やかな解き方で素晴らしいです
個人的に考えていた冗長な解答とは全く別でした
766:132人目の素数さん
18/08/07 18:07:10.36 OZgRm/sA.net
>>705
お願いします
767:132人目の素数さん
18/08/07 18:55:01.41 mHhaEvsq.net
数理統計学の演習問題についての質問です。
●正の確率変数X、|t|<1 に対しA(t)=(E[X^t])^(1/t)とする。
問題はA(t)は増加関数であることを示すのですが、解説をみるといきなり、
h(t) = logA(t)とおくと、
h'(t)≧0 ⇔ E[(X^t)log(X^t)]≧E[X^t]log(E[X^t]) ー①
などと書かれており、思考停止になりました。
その後イエンセンの不等式へとつなげられているのですが、まず①が理解できなくてえ困っています。
どなたかbreak downしていただけないでしょうか。
768:132人目の素数さん
18/08/07 19:07:19.79 ZEcOvrP3.net
杉浦光夫著『解析入門I』ですが、以下の記述があります:
「
以下では指数函数の実数直線上の性質を調べよう。
実数列の極限が(C = R^2 内で)存在すれば、極限は実数であることが定理I.4.5,1)からわかる。
」
これはわざわざ書くべきことでしょうか?
769:132人目の素数さん
18/08/07 19:17:24.94 bPoVlCuF.net
質問が不親切
770:132人目の素数さん
18/08/07 19:28:55.37 Bo7D0lXe.net
>>735-736
737さんの言う通りで、単射準同型E→FによりEの像をEと同一視すればEをFの部分多
771:として見なせるよねということ。 >>738 >「体Eから体Fへの単射準同型が存在する場合、FはEを含んでいるとみなせる」 >がウソってどんな場合? 「...、FはEを含んでいるとみなせる」は常に正しいが、 「...、FはEを(部分体として)含んでいる」は常には正しくない。 例えば、Eを体とし、F_1とF_2をEの相異なる代数閉包とする。 このとき、F_1からF_2へ単射準同型(もっと言うとE同型)が存在する。 しかし、F_1とF_2はEの相異なる代数閉包なので、 F_1はF_2に部分体としては含まれてはいない。
772:132人目の素数さん
18/08/07 20:04:07.76 mSTublUi.net
a[1]=1、a[n+1]=1+1/a[n]の一般項を求めよ。
773:132人目の素数さん
18/08/07 20:50:14.40 gkVDbMDU.net
F(n+1)/F(n)
774:132人目の素数さん
18/08/07 21:02:01.25 4v8aQZ/h.net
>>747
a_(n+1)=a(n)=xとおいた方程式を解く
775:132人目の素数さん
18/08/07 21:17:15.40 mSTublUi.net
>>749
その特性方程式を解いて、解をs,tとしたときに、
初項(1-s)/(1-t),公比t/sの等比数列になるのはわかったんですが、一般項a[n]が激しくなってしまいました。
その計算を教えていただけませんか?
776:132人目の素数さん
18/08/07 22:55:09.60 ZbAcmfsg.net
全=無
ですか?
777:132人目の素数さん
18/08/07 22:56:19.30 d0TLhZPi.net
ちがいます
778:132人目の素数さん
18/08/07 23:30:56.22 ZbAcmfsg.net
じゃあ答えを教えてください。
779:132人目の素数さん
18/08/07 23:42:11.40 QCqAGpcR.net
>>743
以下 d/dt = ∂ と書くとして
∂ E(X^t) = E(∂X^t) = E(X^t log X)
を認めれば
∂ h(t) = ∂ (log E(X^t) / t)
= ∂ log E(X^t) / t - log E(X^t) / t^2
= (∂ E(X^t)) / E(X^t) / t - log E(X^t) / t^2
= (∂ E(X^t)) - E(X^t) log E(X^t)) / (E(X^t) t^2)
= (E(X^t log X) - E(X^t) log E(X^t)) / (E(X^t) t^2)
なので
∂ h(t) ≧ 0 ⇔ E(X^t log X) - E(X^t) log E(X^t) ≧ 0
①のlog(X^t)のとこ^tいらないハズ。
780:132人目の素数さん
18/08/07 23:55:42.47 QCqAGpcR.net
>>754
最後の3行を以下に訂正
ーーー
= (t E(X^t log X) - E(X^t) log E(X^t)) / (E(X^t) t^2)
なので
∂ h(t) ≧ 0 ⇔ t E(X^t log X) - E(X^t) log E(X^t) ≧ 0
ーーー
ここのtをEの中にいれてlog XのXの肩にのっけたら①ですね。
781:132人目の素数さん
18/08/08 03:30:01.16 ujPEEHfC.net
>>747 >>748
a[1]a[2]…a[n] = f(n)
とおくと
f(n+1) = f(n) + f(n-1),
f(1) = 1,
ゆえ、フィボナッチ数
782:132人目の素数さん
18/08/08 04:01:32.95 /NaPNINC.net
>>750
フィボナッチ数列と同じ形になるから計算が激しくなるのは仕方がない
多少の工夫は出来るかもしれんが理系ならその程度の計算力はほしい
783:132人目の素数さん
18/08/08 04:59:13.15 6ouVYLFC.net
>>740
>>741
>>728を見たらわかるが、
(a, b, c) = (28, 8, 6)などは明らかに(xz^3, yz^2, z^2) の形をしていないので、
方程式のすべての解を表せてはいない。
ちなみにこの解法は>>730を見て着想したものです。
その後はしばらく、すべての解を求める方法を考えていましたが思いつきませんでしたね。
784:132人目の素数さん
18/08/08 07:08:40.54 SAR9DlaU.net
2次形式や微分形式、双線型形式などは、それぞれ何か同じ性質を持っていて形式という名前がついているのでしょうか?
785:132人目の素数さん
18/08/08 09:25:35.23 xtRC+Bz0.net
x ∈ R^n, B ⊂ R^m, B はコンパクト ⇒ {x} × B ⊂ R^(n + m) はコンパクト
を証明せよ。
786:132人目の素数さん
18/08/08 10:00:13.52 gN686lnL.net
全ての解を求めるのなら
w^2x^2+w^2(z^2-x^2)=w^2z^2で
w^2(z^2-x^2)=b^3,w^2z^2=c^4となるように
wの素因数の指数を調整すればいい。
787:132人目の素数さん
18/08/08 17:47:54.19 u31t8NmA.net
究極神と至高神と極限神と超絶神と絶頂神と全神と無神の中で最も凄いのはどれですか?
788:132人目の素数さん
18/08/08 17:52:40.59 qpK3LtTu.net
ドラゴンボールはどうでもいいから
789:132人目の素数さん
18/08/08 18:40:54.97 j
790:AIdiJYn.net
791:132人目の素数さん
18/08/08 18:42:52.39 cYC1lVo6.net
日本人は全員ゴミ
792:132人目の素数さん
18/08/08 18:48:07.21 /rj2E5Cb.net
よろしくお願いします
URLリンク(i.imgur.com)
P=√a^2-2a+1+√a^2についてPを簡単にせよ
ただし、0<a<1とする。
簡単にするやり方自体は特に問題はないのですが、
0<a<1より 1-a>0 a>0
したがって、P=(1-a)+a=1
この部分の説明がなぜ必要か、どういう意味なのかがいまいち理解できません
どなたか解説してもらえないでしょうか
793:132人目の素数さん
18/08/08 18:50:58.20 Dh29baoO.net
>>766
一般に実数 A について √A^2 = | A |
特に A<0 のときは A とはならないので注意
ということだろう
794:132人目の素数さん
18/08/08 19:26:55.28 8MKC2VeQ.net
統合失調症の躁鬱期の躁の時に、情報臈漏洩作戦を行うと、
日本の理系の超賢い脳外科医集団とつながるらしく、
自分にはありえない天才的なものが書けたりする。今回は、数日で三行小説を二十個くらい書いた。
そのうちのこれが本当にぼくの著作だとされたら、天才的な数学概念を考えだしたことになる。
62、数字異次元の概念の発明者はぼく
そういえば、おれ、数学者じゃないのに天才数学者といわれたことがあってよ。
無限より大きな数字、数字異次元の概念の発明者なんだよ。
65、いちばん大事な数字
いちばん大事な数字は、「調整」である。「無限」も「極小」もあらゆる「数字」も、無限より大きな「数字異次元」も、「調整」のための「数学記号」である。
66、数学神学
数学者からすれば、数学は、創造主がこの宇宙を幸せにするための調整なのである。
795:132人目の素数さん
18/08/08 19:33:18.64 Aub2v9Yv.net
nankahennnayatukichattana
796:132人目の素数さん
18/08/08 19:38:47.64 8MKC2VeQ.net
めっちゃ怒られてる。
ぼくが数字異次元の発明者でなけれなけれあば、
いちばん大事な数字が調整なこと、これは数学博士といわれる日本でいちばん数学ができるおじいさんのアイデアであり、
数学神学とか、
誰がぼくに教えたりするものかと、けっこう怒った声が聞こえる。
797:132人目の素数さん
18/08/08 19:43:29.95 ujPEEHfC.net
>>734
x^2 + y^3 = z^2 を満たすx,y,zは ピタゴラス数より
(x,y,z) = (s^3 -2,2s,s^3 +2),
a = xz^3 = (s^3 -2)(s^3 +2)^3,
b = yz^2 = 2s(s^3 +2)^2,
c = z^2 = (s^3 +2)^2,
あるいは
(x,y,z) = (2r^3 -1,2r,2r^3 +1),
a = xz^3 = (2r^3 -1)(2r^3 +1)^3,
b = yz^2 = 2r(2r^3 +1)^2,
c = z^2 = (2r^3 +1)^2,
798:132人目の素数さん
18/08/08 22:18:00.09 xtRC+Bz0.net
杉浦光夫著『解析入門I』を読んでいます。
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n)
と書いたとき、これは、
S_m := Σ_{n = 0}^{m} {(-1)^n / (2*n)!} * z^(2*n)
lim S_m を表わすのでしょうか?
それとも、整級数である
Σ_{n = 0}^{∞} a_n * z^n
a_n = 0 for n ∈ {1, 3, 5, …}
a_n = (-1)^(n/2) / n! for n ∈ {0, 2, 4, …}
を表わすのでしょうか?
まあ、どちらの意味にとっても同じことですが、
杉浦さんは混同しているようです。
以下の辺りを読むと混同していることが分かります。
「
次の二つの整級数は絶対収束する:
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n),
…
」
799:132人目の素数さん
18/08/08 22:19:04.79 /HhiPa/W.net
文字 a ,b ,c を繰り返し並べる長さ11の順列で
次の条件を満たすものは何通りあるかです
[条件]
・同じ文字は隣接しない。
・両端は a である。
800:132人目の素数さん
18/08/08 23:41:47.87 SNGhFA0V.net
条件を満たす長さnの列をの数をa[n]とおく。
そのうち右から3文字目がAであるものの数は2a[n-2]。
そのうち右から3文字目がAでないものの数はa[n-1]。
∴a[n] = a[n-1] + 2a[n-2] (∀n ≧ 3)。
801:132人目の素数さん
18/08/09 00:48:09.00 suij88l+.net
次の式を展開せよ
{(2x)^2-(3y)^2}^2
802:132人目の素数さん
18/08/09 00:58:34.62 GMh0pTpR.net
>>768と>>772ってどうしてIDが違うの?
803:132人目の素数さん
18/08/09 01:13:36.39 w0c/gBS2.net
>>773
条件を満たす長さnの順列の数をa[n]とおく。
a[2] = 0,
a[3] = 2 (ABA,ACA)
a[4] = 2 (ABCA,ACBA)
a[5] = 6 (ABABA,ABACA,ABCBA,ACABA,ACACA,ACBCA)
漸化式 >>774 より
a[n] + a[n-1] = 2(a[n-1] + a[n-2]) = … = 2^(n-3)・(a[3] + a[2]) = 2^(n-2),
a[n] -2a[n-1] = -(a[n-1] -2a[n-2) = … = (-1)^(n-3)・(a[3] -2a[2]) = -2(-1)^(n-2),
これより
a[n] = (2/3) {2^(n-2) - (-1)^(n-2)},
804:132人目の素数さん
18/08/09 01:17:22.42 oWNCpKzE.net
lim[n→∞] a[n] が収束することと、
lim[n→∞] {a[1]+...+a[n]}/nが収束することは同値ですか?
805:132人目の素数さん
18/08/09 01:26:54.39 w0c/gBS2.net
>>734
x^2 + y^3 = z^2 を満たす (x,y,z) は ピタゴラス数より
(x,y,z) = (2r^3 -s^3,2rs,2r^3 +s^3),
a = xz^3 = (2r^3 -s^3)(2r^3 +s^3)^3,
b = yz^2 = 2rs(2r^3 +s^3)^2,
c = z^2 = (2r^3 +s^3)^2,
>>730 も含めれば
a = (2r^3 -s^3)(2r^3 +s^3)^3・t^6,
b = 2rs(2r^3 +s^3)^2・t^4,
c = (2r^3 +s^3)^2・t^3,
しかし、方程式のすべての解を表せてはいない。 >>758
806:132人目の素数さん
18/08/09 01:36:43.85 w0c/gBS2.net
>>778
同値ではない。
凡例 a[n] = (-1)^n,
807:773
18/08/09 09:24:04.50 lijANQYP.net
>>774 >>777 ありがとうぼざいます!
>そのうち右から3文字目がAでないものの数はa[n-1]。
が一瞬「何で?」と思いましたが良く考えたらわかりました。なるほどです。
808:132人目の素数さん
18/08/09 10:47:30.79 4kX369cB.net
龍樹とハーバード大学首席合格者はどっちの方が頭が良いですか?
809:132人目の素数さん
18/08/09 11:35:53.59 4afoCWVZ.net
惨めな奴
810:132人目の素数さん
18/08/09 12:44:47.96 sUCqByCF.net
4.
(a) Show that open balls and open cubes in R^n are convex.
(b) Show that (open and closed) rectangles in R^n are convex.
811:132人目の素数さん
18/08/09 12:50:56.13 sUCqByCF.net
>>784
(a)
||x|| をユークリッドノルム
|x| を sup ノルム
とする。
a, b ∈ B(c ; ε) とする。
0 ≦ t ≦ 1 とする。
||a + t * (b - a) - c|| = ||(1 - t)*(a - c) + t*(b - c)|| ≦ (1 - t)*||a - c|| + t*||b - c|| = (1 - t)*ε + t*ε = ε
よって、
a + t * (b - a) ∈ B(c ; ε)
a, b ∈ C(c ; ε) とする。
0 ≦ t ≦ 1 とする。
|a + t * (b - a) - c| = |(1 - t)*(a - c) + t*(b - c)| ≦ (1 - t)*|a - c| + t*|b - c| = (1 - t)*ε + t*ε = ε
よって、
a + t * (b - a) ∈ C(c ; ε)
812:132人目の素数さん
18/08/09 12:57:43.44 sUCqByCF.net
>>784
(b)
a = (a_1, …, a_n) ∈ [c_1, d_1] × … × [c_n, d_n]
b = (b_1, …, b_n) ∈ [c_1, d_1] × … × [c_n, d_n]
0 ≦ t ≦ 1
とする。
c_i ≦ a_i ≦ d_i
c_i ≦ b_i ≦ d_i
(1-t)*c_i ≦ (1-t)*a_i ≦ (1-t)*d_i
t*c_i ≦ t*b_i ≦ t*d_i
c_i = (1-t)*c_i + t*c_i ≦ (1-t)*a_i + t*b_i ≦ (1-t)*d_i + t*d_i = d_i
∴
a + t*(b - a) ∈ [c_1, d_1] × … × [c_n, d_n]
a = (a_1, …, a_n) ∈ (c_1, d_1) × … × (c_n, d_n)
b = (b_1, …, b_n) ∈ (c_1, d_1) × … × (c_n, d_n)
0 < t < 1
とする。
c_i < a_i < d_i
c_i < b_i < d_i
(1-t)*c_i < (1-t)*a_i < (1-t)*d_i
t*c_i < t*b_i < t*d_i
c_i = (1-t)*c_i + t*c_i < (1-t)*a_i + t*b_i < (1-t)*d_i + t*d_i = d_i
∴
a + t*(b - a) ∈ [c_1, d_1] × … × [c_n, d_n]
t = 0 のとき
a + t*(b - a) = a = (a_1, …, a_n) ∈ (c_1, d_1) × … × (c_n, d_n)
t = 1 のとき
a + t*(b - a) = b = (b_1, …, b_n) ∈ (c_1, d_1) × … × (c_n, d_n)
813:132人目の素数さん
18/08/09 13:57:29.03 m5QC4xso.net
ツォンカパとレオンハルト・オイラーはどっちの方が頭が良いですか?
814:132人目の素数さん
18/08/09 18:19:12.83 VsuWPTC7.net
この問題を教えてください
URLリンク(i.imgur.com)
815:学術
18/08/09 20:01:00.67 R2YpbM9F.net
数学なんて経済や経営
816:してみないと使いようがないから、なぜそんなに一人歩きの 無駄をしたのだろうなあ。
817:132人目の素数さん
18/08/09 20:02:56.63 JYkuLOkZ.net
全帝国皇帝と無帝国皇帝はどっちの方が凄いですか?
818:学術
18/08/09 20:20:59.93 R2YpbM9F.net
数学は自由度が高いことが何をどうしていいかよくわからない悩みに効くのかもね。
819:学術
18/08/09 22:48:12.36 R2YpbM9F.net
URLリンク(www.youtube.com)
URLリンク(www.youtube.com)
URLリンク(www.youtube.com)
820:132人目の素数さん
18/08/10 00:05:27.85 apZDSISF.net
S[m,n]=Σ[k=m,...,n] 1/k とおく。
このとき、以下の式を満たす自然数pは存在しないことを示せ。
S[1,p]=S[p+1,p^2]=...=S[p^i+1,p^(i+1)]=...
なお lim[n→∞] S[n] が正の無限大に発散することは既知としてよい。
821:132人目の素数さん
18/08/10 00:30:38.12 0Fm7LTM5.net
>>793
S[p^i+1,p^(i+1)]
=log p + r[i]。
但し r[i] は∫[p^i,p^(i+1)] (1/x - [1/x])dx。
とくにr(i)≠0かつr[i]≦p^i。(∵ [1/x]≦y≦1/xの部分をx軸方向に適宜スライドすれば底辺1,高さ1/p^iの長方形に収まる。)
よってr[0]>r[p^i]となる i をとれば
S[p^0+1,p^1] > S[p^i+1,p^(i+1)]。
822:132人目の素数さん
18/08/10 00:32:27.21 2xwQ5bCq.net
これの1行目から2行目で
(a-b+c)が{a-(b-c)}になってるんだけど
何で+cが-cになるの
URLリンク(i.imgur.com)
823:132人目の素数さん
18/08/10 00:36:52.10 0Fm7LTM5.net
>>794
訂正
×:>=log p + r[i]。
○:>=log p - r[i]。
と
×:とくにr(i)≠0かつr[i]≦p^i。(…
○:とくにr(i)≠0かつr[i]≦1/p^i。(…
と
×:S[p^0+1,p^1] > S[p^i+1,p^(i+1)]。
○:S[p^0+1,p^1] < S[p^i+1,p^(i+1)]。
824:132人目の素数さん
18/08/10 01:00:39.07 aBe+7ih9.net
>>788
α=1+(1/2)*(cos(π/3)+i*sin(π/3))を掛けることで次々と点P_(n) が得られることを確認する。
つまり等比数列(初項1、公比α)をなす複素数達が表す点達が{P_(n)|n∈N}になる。
825:132人目の素数さん
18/08/10 01:09:07.25 TxWdR9dT.net
7個の a と3個の b を一列に並べてできる順列のうち
次の簡約律のもとで文字を消していくと最終的に何も残らなくなる順列は何通りありますか。
・aa が現れると消える。
・bb が現れると消える。
・ababab が現れると消える。
・bababa が現れると消える。
こういう問題は群論とかと関係があるんでしょうか。
826:132人目の素数さん
18/08/10 01:44:30.74 0Fm7LTM5.net
>>799
a → (12)、b → (23)と対応させた3次対称群の元が単位元になる場合に相当。
a^x b a^y b a^z c a^w と書くとき単位元になるのはy≡z≡1 (mod 2)のとき。
y,zの値に対してx,wの数は
(y,z) = (1,1) のとき#{(x,w)} = 6、
(y,z) = (1,3) のとき#{(x,w)} = 4、
(y,z) = (1,5) のとき#{(x,w)} = 2、
(y,z) = (3,1) のとき#{(x,w)} = 4、
(y,z) = (3,3) のとき#{(x,w)} = 2、
(y,z) = (3,5) のとき#{(x,w)} = 0、
(y,z) = (5,1) のとき#{(x,w)} = 2、
(y,z) = (5,3) のとき#{(x,w)} = 0、
(y,z) = (5,5) のとき#{(x,w)} = 0。
求める場合の数は20。
827:798
18/08/10 02:00:32.81 TxWdR9dT.net
>>799
すごいです。もしかして神様ですか?
828:132人目の素数さん
18/08/10 02:58:46.29 MxWQLJMW.net
>>788
(1)
P_1 - P_0 = 1 に α = (1/2)exp(iπ/3) をn回掛けることで P_{n+1} - P_n が得られることを確認する。
つまり等比数列(初項1、公比α)をなす複素数達が {P_{n+1}-P_(n) | n∈N} になる。
P_{n+1} - P_n = α^n (P_1 - P_0) = α^n,
P_n = (1 - α^n)/(1-α),
(2) 1/(1-α),
|α| = 1/2 < 1,
829:132人目の素数さん
18/08/10 04:04:37.60 MxWQLJMW.net
>>734
関連情報(?)
一つの整数を二つの平方数の差で表わす方法
スレリンク(math板)
830:132人目の素数さん
18/08/10 06:42:47.21 apZDSISF.net
数列{a[n]}を以下のように定義する。
a[0]=m
a[n+1]=a[n]-❲√(a[n])❳
ただしmは自然数であり、実数xに対して❲x❳はxを超えない最大の整数である。
問題:a[n]=0となる最小のnをmで表せ。
831:132人目の素数さん
18/08/10 07:10:02.32 apZDSISF.net
2つの円CとDは相異なる2点で交わっている。
これによりCとDの和集合である領域は、CおよびDの円弧により3つの領域に分割される。
このとき、CとDがどのような交わり方をしていても、次のような直線lを引くことができるか。
「lはどの領域の内部も通り、かつ、lの各領域に含まれる部分の長さは全て等しい。」
832:798
18/08/10 07:24:47.42 TxWdR9dT.net
>>799
798の問題はつまりあみだくじの問題ということですか。
縦棒3本(左から順にL1,L2,L3とする)のあみだくじで
L1-L2間に7本、L2-L3間に3本の横棒が引かれたもので
「単位あみだくじ」になるものは何通りあるか、ということですね。
833:132人目の素数さん
18/08/10 08:31:13.09 MxWQLJMW.net
>>803
実数xを超えない最大の整数は [x] と書く習わしです。(ガウス記号)
f(k) = [ √(4k-3) ] (k≧1)
= 0 (k=0)
とおく。
n が1だけ増加すると、f(a_n) は1だけ減少する。ただし a_n=0 のときは変わらない。
f(a_k) = f(a_0) - k = f(m) - n,
a_n = 0 となる最小のnを考えると
0 = f(0) = f(a_n) = f(m) - n,
∴ n = f(m) = [ √(4m-3) ]
834:132人目の素数さん
18/08/10 08:47:59.40 MxWQLJMW.net
>>805
798 の問題はつまり あみだ仏の本願ということですか。
「弥陀の本願まことにおわしまさば、釈尊の説教、虚言なるべからず。
仏説まことにおわしまさば、善導の御釈、虚言したまうべからず。
善導の御釈まことならば、法然の仰せ、空言ならんや。
法然の仰せまことならば、親鸞が申す旨、またもって虚しかるべからず候か。」
(歎異抄/二章)
835:132人目の素数さん
18/08/10 09:26:13.59 apZDSISF.net
>>806
f(k)はどうやって思いついたんですか?とても思いつきませんでした。
私はm=N^2-p(p=0,1,...,2N-2)とおいて実験しました
836:132人目の素数さん
18/08/10 12:44:30.80 lOg+llmH.net
>>798
その20種類をコンピューターで算出してみた。
> print(t(apply(AB,1,indx2char)),quote = FALSE)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] a a a a a b a b a b
[2,] a a a a b a b a b a
[3,] a a a b a a a b a b
[4,] a a a b a b a a a b
[5,] a a a b a b a b a a
[6,] a a b a a a b a b a
[7,] a a b a b a a a b a
[8,] a a b a b a b a a a
[9,] a b a a a a a b a b
[10,] a b a a a b a a a b
[11,] a b a a a b a b a a
[12,] a b a b a a a a a b
[13,] a b a b a a a b a a
[14,] a b a b a b a a a a
[15,] b a a a a a b a b a
[16,] b a a a b a a a b a
[17,] b a a a b a b a a a
[18,] b a b a a a a a b a
[19,] b a b a a a b a a a
[20,] b a b a b a a a a a
837:132人目の素数さん
18/08/10 13:12:05.50 B0qzPV6D.net
a+b=1 (a,bは正の実数)
x_1+x_2=1のとき
a(x_1)^2+b(x_2)^2の最小値を求めよという問題なのですが1/4だと思うんですけどa,bが非負になると0ですよね?
838:132人目の素数さん
18/08/10 15:10:15.69 kFmF6s2K.net
自然数の数列の逆数和が発散するのか収束するのか知られていない例
にはどんなものがあるのでしょうか?
>large と small のどちらになるかが知られていない数列もたくさん存在する。
URLリンク(ja.wikipedia.org)(%E7%B5%84%E3%81%BF%E
839:5%90%88%E3%82%8F%E3%81%9B%E8%AB%96)
840:132人目の素数さん
18/08/10 15:44:01.30 W03RmRwM.net
全=無
ですか?
841:132人目の素数さん
18/08/10 17:27:09.43 B/ldB9oa.net
;::ー--ィメ一亠'/_,ノノ /´゙ママllャ‐/゙ 、
゙ 、 `ヘ. ゙〈││亅∫二' _!│
゙、 /ゝ「\___゙ヘ.// ト-='- !
j-っ'|'';゙,,,,_ニ ゙̄l \ l!;--│
!-}./ 丿 丨''ヘ ` ノ!-- │
!、」|!l’丨 ‐.._ヽ,-'l!=== ヽぅ/
!_ノ./-_ノucェ---..,,__ノ‐''''''''''""
!'' l|゙lヽ ̄"―'ユ|!
! 1'、 ヽ ニコ|
L..._‐,,__` -ミ
│ :-:ilヘ ̄^三
│ ヾサ '、 ‐ム
l-ニニ '........∧
|! つ 丶 =|
│ │ '、 ヨ
丿-ヌ l__ム
nfニ_‐コノ ノニ゙ン
842:798
18/08/10 17:38:33.22 TxWdR9dT.net
>>799
神様の力をもう一度借りたいです。
元の問題で,
7個の a と3個の b を一列に並べてできる順列
これを
6個の a と4個の b を一列に並べてできる順列
にした場合はどうすれば数えればいいでしゅうか。
843:132人目の素数さん
18/08/10 18:45:57.60 B/ldB9oa.net
>>798
単に自由群(群はあまりきにしない)のもんだいじゃないの
aa=e
bb=e
ae=a
ea=a
be=b
eb=b
のきそくで {a,a,a,a,a,a,a,b,b,b} の順列(120個)を簡単化すると
e に帰着するのが20個になる
ならないのは
ab ,ba、bae,におちる。
とはいっても計算機にやらせたほうがいいね
844:132人目の素数さん
18/08/10 18:53:31.88 B/ldB9oa.net
aa=e
bb=e
ae=a
ea=a
be=b
eb=b
ababab=1
bababa=1
のきそく
に
と訂正してくだされ 手を動かすのはしんどいので
わたしはかみさまと別人です。
もうしわけないので
6a,4b は順列が210になるのかな
それで答えは100になる。
それではしつれい
845:132人目の素数さん
18/08/10 19:46:26.46 rBGJ83Dc.net
これの(3)の置き方はセンスなんですか?あと、この問題でのダランベールで階数下げる方法を教えて頂きたいです
URLリンク(i.imgur.com)
URLリンク(i.imgur.com)
846:132人目の素数さん
18/08/10 19:53:19.70 Hnx0B79D.net
K を R または C とする。 K の二つの開集合 A, B に対し、 f が A から B への
全単射で、 f が連続であるとする。
このとき、 f^(-1) も連続となるか?
847:132人目の素数さん
18/08/10 20:43:03.55 Nt8gcgF2.net
これらの関係性って、以下であってますか?
他に正規部分群になったりしますか?
(≥は部分群, ▹は正規部分群)
GL_n(ℝ) ≥ O(n) ▹SO(n) ≤ SL_n(ℝ)
⊲ GL_n(ℝ) ≥ SO(n)
この2つ以外に正規部分群になる組がないということに確証が持てません
848:132人目の素数さん
18/08/10 20:57:51.48 IvuMWXPQ.net
>>814
>>799と同じじゃないの?
a^x b a^u b a^y b a^v a^w
とおいて u≡v (mod 2) が必要でそれぞれ
u≡v�
849:゚0 (mod 2)のときはx+y+zは任意、 u≡v≡1 (mod 2)のときはy≡0 (mod 2)。 (u,v) = (0,0) → #{(x,y,z)} = 28、 (u,v) = (0,2),(2,0) → #{(x,y,z)} = 15、 (u,v) = (0,4),(2,2),(4,0) → #{(x,y,z)} = 6、 (u,v) = (0,6),(2,4),(4,2),(6,0) → #{(x,y,z)} = 1、 (u,v,y) = (1,1,0) → #{(x,z)} = 5、 (u,v,y) = (1,1,2),(1,3,0),(3,1,0) → #{(x,z)} = 3、 (u,v,y) = (1,1,4),(1,3,2),(3,1,2),(1,5,0),(3,3,0),(5,1,0) → #{(x,z)} = 1、 全部足して100。
850:132人目の素数さん
18/08/10 21:16:02.50 9N8PyoKh.net
全=無
ですか?
851:132人目の素数さん
18/08/10 21:38:51.06 apZDSISF.net
高校の微積分までを使って解ける統計学の面白い問題はありませんか?
852:132人目の素数さん
18/08/10 21:51:04.45 9N8PyoKh.net
全てのプログラミング言語を自由自在に操れるようにすることって可能ですか?
853:132人目の素数さん
18/08/10 22:38:41.42 Hlm8Oe3x.net
>>815
100個コンピューターで表示させてみた。
1 b b b b a a a a a a
2 b b b a a b a a a a
3 b b b a a a a b a a
4 b b b a a a a a a b
5 b b a b b a a a a a
6 b b a b a a b a a a
7 b b a b a a a a b a
8 b b a a b b a a a a
9 b b a a b a a b a a
10 b b a a b a a a a b
11 b b a a a b b a a a
12 b b a a a b a a b a
13 b b a a a a b b a a
14 b b a a a a b a a b
15 b b a a a a a b b a
16 b b a a a a a a b b
17 b a b b a b a a a a
18 b a b b a a a b a a
19 b a b b a a a a a b
20 b a b a a b a b a a
21 b a b a a b a a a b
22 b a b a a a a b a b
23 b a a b b b a a a a
24 b a a b b a a b a a
25 b a a b b a a a a b
26 b a a b a b b a a a
27 b a a b a b a a b a
28 b a a b a a b b a a
29 b a a b a a b a a b
30 b a a b a a a b b a
31 b a a b a a a a b b
32 b a a a b b a b a a
33 b a a a b b a a a b
34 b a a a b a a b a b
35 b a a a a b b b a a
36 b a a a a b b a a b
37 b a a a a b a b b a
38 b a a a a b a a b b
39 b a a a a a b b a b
40 b a a a a a a b b b
41 a b b b b a a a a a
42 a b b b a a b a a a
43 a b b b a a a a b a
44 a b b a b b a a a a
45 a b b a b a a b a a
46 a b b a b a a a a b
47 a b b a a b b a a a
48 a b b a a b a a b a
49 a b b a a a b b a a
50 a b b a a a b a a b
854:132人目の素数さん
18/08/10 22:38:59.86 Hlm8Oe3x.net
51 a b b a a a a b b a
52 a b b a a a a a b b
53 a b a b b a b a a a
54 a b a b b a a a b a
55 a b a b a a b a b a
56 a b a a b b b a a a
57 a b a a b b a a b a
58 a b a a b a b b a a
59 a b a a b a b a a b
60 a b a a b a a b b a
61 a b a a b a a a b b
62 a b a a a b b a b a
63 a b a a a a b b b a
64 a b a a a a b a b b
65 a a b b b b a a a a
66 a a b b b a a b a a
67 a a b b b a a a a b
68 a a b b a b b a a a
69 a a b b a b a a b a
70 a a b b a a b b a a
71 a a b b a a b a a b
72 a a b b a a a b b a
73 a a b b a a a a b b
74 a a b a b b a b a a
75 a a b a b b a a a b
76 a a b a b a a b a b
77 a a b a a b b b a a
78 a a b a a b b a a b
79 a a b a a b a b b a
80 a a b a a b a a b b
81 a a b a a a b b a b
82 a a b a a a a b b b
83 a a a b b b b a a a
84 a a a b b b a a b a
85 a a a b b a b b a a
86 a a a b b a b a a b
87 a a a b b a a b b a
88 a a a b b a a a b b
89 a a a b a b b a b a
90 a a a b a a b b b a
91 a a a b a a b a b b
92 a a a a b b b b a a
93 a a a a b b b a a b
94 a a a a b b a b b a
95 a a a a b b a a b b
96 a a a a b a b b a b
97 a a a a b a a b b b
98 a a a a a b b b b a
99 a a a a a b b a b b
100 a a a a a a b b b b
855:132人目の素数さん
18/08/10 22:40:40.61 Hlm8Oe3x.net
>>822
ゴルゴ13は100発100中
ゴルゴ14は10発10中
ゴルゴ15は1発1中
とする。
各々10000発撃ったとき各ゴルゴの命中数の期待値はいくらか?
ドツボ13は100発0中
ドツボ14は10発0中
ドツボ15は1発0中
とする。
各々10000発撃ったときドツボの命中数の期待値はいくらか?
856:132人目の素数さん
18/08/11 01:24:35.12 R/gFC10O.net
>>826
確率はゼロですな
戦時中地上砲火で敵戦闘機を撃墜したのが、数万発で一発ということだった。
地上のテストの評価報告は、>>826 とおなじであった。(要するに当たらない)
それゆえ 弾の無駄だが、敵機も緊張するのか爆弾も外れることが多かった。
数学的説明は上官がわめいていた。
ロシアは優秀なポント。。。何とかという人が、対空砲火オペのりろんつくっていたらしけどね
857:132人目の素数さん
18/08/11 04:50:49.64 sk10gcdk.net
「整数の集合は和と積の演算において環になる」
という言い方に違和感があるんですが。
「整数の集合が環になるように、和と積の演算を定義した」
というべきじゃないんですか?
858:132人目の素数さん
18/08/11 04:54:39.06 sk10gcdk.net
859:前者の言い方だとまるで演算が先にあって、それがたまたま環の演算の規則に合致していた ように聴こえるんですが。実際は、環の演算の規則に合致するように演算を定義したんですよね?
860:132人目の素数さん
18/08/11 06:09:29.18 OesSEWnz.net
>>827
3打数1安打と300打数1安打の期待値は違うんじゃ?
最尤値は同じだろうけど。
861:132人目の素数さん
18/08/11 06:10:30.49 OesSEWnz.net
>>829
零の零乗とかもそう?
862:132人目の素数さん
18/08/11 06:22:41.86 OesSEWnz.net
>>826
命中率の事前確率を一様分布とする という設定がないと計算できない。
863:132人目の素数さん
18/08/11 06:26:26.71 OesSEWnz.net
>>822
あるタクシー会社のタクシーには1から通し番号がふられている。
タクシー会社の規模から保有タクシー台数は100台以下とわかっている。
この会社のタクシーを5台みかけた。最大の番号が60であった。
この会社の保有するタクシー台数の期待値は?
864:132人目の素数さん
18/08/11 06:33:26.99 /7veEAAF.net
>>828
環っていう概念がないところですでに和と積が定義されているのに?
865:132人目の素数さん
18/08/11 06:33:51.37 /7veEAAF.net
>>829
演算が先だよ?
866:132人目の素数さん
18/08/11 06:37:27.57 /7veEAAF.net
>>829
たまたま環の定義に合致していたんだけど?
てゆーか
環の概念を
整数やら多項式やら
和と積が定義されているいろいろな集合に
共通するように定義したんだけど?
867:132人目の素数さん
18/08/11 07:30:11.28 jvzdrX0f.net
aとbを無理数とし、a<bとする。
このとき、a<c<bなる無理数cが存在することを示せ。
868:132人目の素数さん
18/08/11 08:50:37.23 KjzsAEhK.net
(2a+b)/3, (a+2b)/3が有理数ならa,b共に有理数。
869:132人目の素数さん
18/08/11 09:07:15.36 O3XHe6Z3.net
>>837
[ 1/(b-a) ] + 1 = n とおく。
b-a > 1/n,
a < m/n < b なる有理数 m/n がある。(mは整数)
c = (a + m/n)/2,(m/n + b)/2,等など。
>>810
最小値はないが、下限は0
(a,b,x1,x2) = (ε,1-ε,1,0) のとき ε
(a,b,x1,x2) = (1-ε,ε,0,1) のとき ε
870:132人目の素数さん
18/08/11 11:59:57.72 fhmCrAJF.net
条件付き確率の問題です。
袋 1 には赤玉 4 個、青玉 6 個、袋 2 には赤玉 5 個、青玉 4 個が入っている。抽選により1つの袋を選び、
その中から玉を1個取り出すとき、それが青玉である確率を求めよ。
(1/2)*(6/10) + (1/2)*(4/9) が答えですが、分からない点があります。
袋 1 が選ばれるという事象を A とする。
青玉が取り出されるという事象を B とする。
P(A ∩ B) = P(A) * P_A(B), P(A) = 1/2, P_A(B) = 6/10 だから乗法定理により
P(A ∩ B) = (1/2) * (6/10)
というような解説を目にします。
ところが、 P_A(B) の定義は、
P_A(B) := P(A ∩ B) / P(A)
です。従って、 P_A(B) を計算するには、 P(A ∩ B), P(A) の値が必要になります。
これは循環論法ではないでしょうか?
P_A(B) を直接何らかの方法で求めているようですが、これはどういうことでしょうか?
871:132人目の素数さん
18/08/11 12:42:10.95 nt+CHb9r.net
PA(B)は、Aが起きた時にBが起こる確率です
今の場合、袋1を選択した時、青を選ぶ確率です
6/10ですね
872:132人目の素数さん
18/08/11 12:48:11.65 fhmCrAJF.net
>>841
ですが、P_A(B) の定義は、
P_A(B) := P(A ∩ B) / P(A)
です。
ですので、これを計算するには、求める答えである P(A ∩ B) が分からないと計算できないはずです。
873:132人目の素数さん
18/08/11 13:06:10.84 2lsAzaWv.net
なるほどなるほど、つまり内積空間における角の定義はcosθ=(略)だから、内積を求めるためにA・B=|A||B|cosθは使えない(使ったら循環論法になる)という主張ですね?
874:132人目の素数さん
18/08/11 13:27:49.29 fhmCrAJF.net
>>843
角を
θ := <A, B> / |A|*|B|
で定義するならば、使えないと思います。
875:132人目の素数さん
18/08/11 13:28:21.17 fhmCrAJF.net
>>843
角を
cos(θ) := <A, B> / |A|*|B|
で定義するならば、使えないと思います。
876:132人目の素数さん
18/08/11 13:29:25.45 fhmCrAJF.net
内積を求めるその公式には何のありがたみもありません。
877:132人目の素数さん
18/08/11 13:31:29.99 fhmCrAJF.net
同じように、乗法公式とわざわざ名前の付けられている
P_A(B) := P(A ∩ B) / P(A)
という式には何のありがたみもありません。
878:132人目の素数さん
18/08/11 13:37:12.85 fhmCrAJF.net
同じように、乗法公式とわざわざ名前の付けられている
P(A ∩ B) = P(A) * P_A(B)
という式には何のありがたみもありません。
879:132人目の素数さん
18/08/11 13:52:01.98 /xq25TtK.net
神様は数学の支配下にあるのでしょうか?
880:132人目の素数さん
18/08/11 14:40:35.27 /7veEAAF.net
>>848
>ID:fhmCrAJF
全然ダメダメ
881:132人目の素数さん
18/08/11 15:09:52.19 1YQQpFZX.net
>>842
それは定義ですか?
定理ではありませんか?
882:132人目の素数さん
18/08/11 15:50:57.24 sTs4VXir.net
劣等感のほうがまだマシだな
それとも劣等感の新ネタか?
883:132人目の素数さん
18/08/11 18:01:26.60 3cONG44t.net
複素数平面上に三角形をなす3つの点と対応する複素数、O(0),A(α),B(β)をとる
Oは原点
重心Gをあらわす複素数がα*β/3となるための条件は|α-1|=1であることを証明せよ
という問題なのですがまったく解けません
助けてください
884:132人目の素数さん
18/08/11 18:07:28.54 fhmCrAJF.net
>>851
赤いチャート式に載っている「定義」です。
885:132人目の素数さん
18/08/11 18:13:58.22 3cONG44t.net
自力で解けました
ありがとうございました
なんで本番でできなかったんだろう・・・・・
886:132人目の素数さん
18/08/11 18:15:14.63 4h9sumgz.net
>>653
α=2、β=i のとき|α-1| = 1だけど重心はα*β/3になんかならないけど?
887:132人目の素数さん
18/08/11 19:35:18.98 YJB4cadW.net
物質が何も無い無限大の空間で自分一人だけ永遠にポツンと存在し続けたらどうなるのでしょうか?
888:132人目の素数さん
18/08/11 20:13:16.75 O/h5+IQW.net
>>840
AとBが独立事象じゃないんじゃない?
P(A ∩ B) = P(A) * P_A(B) ≠ P(A)*P(B)
889:132人目の素数さん
18/08/11 20:15:38.01 O/h5+IQW.net
A-Bag : Red-4 Blue-6
nonA-Bag : Red-5 Blue-4
A: picking A-Bag
B: picking Blue
P_Y(X)=P(X|Y)
P(A)=1/2
P(¬A)=1/2
P(A∩B)=P(A)P(B|A) = 1/2*6/10 = 0.3
= P(B)P(A|B)
P(B) = P(B|A)P(A) + P(B|¬A)P(¬A)= (1/2)*(6/10) + (1/2)*(4/9)=47/90
P(A)P(B)=1/2*47/90=47/180=0.2611111
P(A|B)=P(A)P(B|A)/P(B)
=P(A)P(B|A)/{P(A)P(B|A) + P(¬A)P(B|¬A)}
=(1/2*6/10) / (1/2*6/10 + 1/2*4/9)
= 27/47
890:132人目の素数さん
18/08/11 20:28:09.48 otNCH/Gz.net
>>854
当該ページを見せてよ
891:132人目の素数さん
18/08/11 20:38:40.80 fhmCrAJF.net
>>860
赤いチャート式に限らず、普通の高校の教科書でもこの定義は書いてあるかと思います。
892:132人目の素数さん
18/08/11 21:55:41.21 3t3xr1cT.net
ax^2+bxy+cy^2 (a,b,c:整数)はb^2-4acが平方数のとき有理数係数の1次式の積に書けることを示して下さい
893:132人目の素数さん
18/08/11 22:09:28.21 pW3k6Y87.net
a=b=c=0
894:132人目の素数さん
18/08/11 22:17:08.72 YJB4cadW.net
今、二項定理の勉強をしていて、疑問に思ったことがあるので質問します。
URLリンク(o.8ch.net)