18/07/06 15:53:02.97 Fbh8MKIz.net
>>734 >>735 >>767
a_i ∈ Q,
p_i ∈ N (1≦i≦n) は互いに素かつ平方数でない自然数とする。
nに関する帰納法で示す。
n=1 のときは明らか。
nで成立するとして、n+1 のときを示す。
Σ[i=1, n] a_i √(p_i) + √(p_{n+1}) = 0 かつ (a_1,a_2,…,a_n) ≠ (0,0,…,0)
だったと仮定する。(背理法)
√(p_{n+1}) = - Σ[i=1,n] a_i √(p_i) = -a_n √(p_n) + b,
とおく。ここに b ∈ Q(√p_1,…,√p_{n-1}) = K.
・a_n・b ≠0 のとき
p_{n+1} = {-a_n√(p_n) + b}^2 = (a_n)^2(p_n) + bb - 2(a_n)b√(p_n),
√(p_n) = {p_{n+1} -(a_n)^2・(p_n) -bb}/{2(a_n)b} ∈ K. (矛盾)
・a_n = 0 のとき
√(p_{n+1}) = b ∈ K. (矛盾)
・b=0 のとき
√(p_{n+1}/p_n) = -a_n ∈ Q. (矛盾)
よって n+1 のときも成立する。