分からない問題はここに書いてね444at MATH
分からない問題はここに書いてね444 - 暇つぶし2ch15:132人目の素数さん
18/06/07 14:31:07.80 LV2DjXT6.net
[前スレ.994]
[前スレ.999] の続き
P(3|T) = P(j+k≡0)
 = Σ[L=0,3n] C[3n,L] (2/3)^L (1/3)^(3n-L) {1+ω^L + ω^(-L)}/3
 = {1 + ((1+2ω)/3)^(3n) + ((1+2/ω)/3)^(3n)}/3
 = {1 + (1/3)^(3n/2)[i^(3n) + (-i)^(3n)]}/3
 = {1 + (1/3)^(3n/2)[(-i^)^n + i^n]}/3
 = {1 + (1/3)^(3n/2)・2cos(nπ/2)}/3,
P(3|T ∧ 3|S) = P(j≡0 ∧ k≡0)
 = Σ[0≦j+k≦3n] (3n)!/{j! k! (3n-j-k)!} (1/3)^(3n) {1+ω^j +ω^(-j)}/3・{1+ω^k +ω^(-k)}/3
 = {1 + ((1+2ω)/3)^(3n) + ((1+2/ω)/3)^(3n) + 2((2+ω)/3)^(3n) + 2((2+1/ω)/3)^(3n) + 0^(3n)}/9
 = {1 + (1/3)^(3n/2)[i^(3n) + (-i)^(3n) + 2((√3 +i)/2)^(3n) + 2((√3 -i)/2)^(3n)]}/9
 = {1 + (1/3)^(3n/2)[(-i)^n + i^n + 2・i^n + 2(-i)^n]}/9
 = {1 + (1/3)^(3n/2)・6cos(nπ/2)}/9,
P(3|T ∧ 3|S) / P(3|T)
 = {1 + 4cos(nπ/2)/[3^(3n/2) +2cos(nπ/2)]}/3,
かな


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch