18/06/16 12:48:15.16 yyrwvr6q.net
1辺の長さがaの正八面体Vを考える。
(1)Vの向かい合う面の距離Laを求めよ。
(2)Vの1つの頂点をA、そのVの重心Gに関して反対側の頂点をBとする。またVの残りの4頂点をP、それら4点の乗る平面をπとする。
A、Bを通る平面が直線PGと角θで交わるとき、その平面により切断されるVの断面の面積S(θ)を求めよ。ただしθは0≦θ<2πで、θはGPを始線として反時計回りにとる。
(3)Sa = (1/2π){ ∫[0→2π] S(θ) dθ } を求めよ。
(4)積Sa・LaはVの体積の何倍か。