18/06/25 06:43:11.89 i3V6MyI3.net
あまり見込みはありませんが、「二つの逆コラッツ操作
(「2倍する」と「2倍して1を引いてから3で割る」)が
実質的に同じものと見なせる」ことを示す、というアプローチも
考えられます。
(m, ABS(n - 2m)) → (m, n)
がなぜ三分木に対応するかというと、この操作の逆操作が
・m に n の二倍を足す
・n に m の二倍を足す
・n の二倍から m を引く
という三つの操作に対応するからです(m × n の長方形を
考えるとわかりやすいです。互除法の変形です。互除法
なので、連分数とかかわってきます)。
ただ、このアプローチはせめて「コラッツ操作によって、
任意の n についての中間値が最大どこまで大きくなるか」の
上限値を n の関数として表せないと無理筋なので、
攻めるとすればここかな?と思っています。つまり、「最下位の
オンビット列の連鎖が、どう現れるのか」です。
連投ごめんなさい。m(_ _)m