コラッツ予想がとけたらいいな その2at MATH
コラッツ予想がとけたらいいな その2 - 暇つぶし2ch156:132人目の素数さん
18/05/28 08:14:16.23 DIMEHMYY.net
一応、まとめてみる。
自然数 p と q を考えよう。
とりあえず、p は措いておいて q について考える。
2^q - 3 は、2 < q のときに、二進数で q - 1 桁になる。いちおう、
「q が 1 のとき、結果がマイナスになるのだが、ちゃんと考えてるか?」
とかいった話もあるが、ここでは正の数だけを考えることにする。
つぎに、メルセンヌ数 p^2 - 1 を考える。これは p - 1 桁の数になる。
これを結合したビット列を考えよう。それは (2^p - 1) + 2^p × (2^q - 3) であり、
桁数としては (p - 1)+(q - 1) 桁であるから、p + q - 2 となる。
このとき、「2^q - 3 に『三倍して2を足す』操作を p 回繰り返した結果に
コラッツ操作を施すことで、どれほどの桁数(これを n とする)になり、
最下位に何桁(これを m とする)のメルセンヌ数が出てくるか?」を
考える(m < n であることに注意)。
m と n を p と q の関数で表して、 n - m が q - 1 よりもどんどん大きく
なっていったら、コラッツ予想は「はずれ」だということになる。
おそらく、最悪のケースで見積もると、“爆発”(無限大に発散)すると思う。
そうでなかったら、コラッツ問題はとっくに解決しているはずだ。
だから、相当に ややこしいテクニックを駆使して「最悪のケース」を避けて
「無限大には発散しない」ことが示せれば、コラッツ予想は肯定的に証明される
ことになる。
そんなにうまくゆくとも思えないし、可能だとしても相当に苦労するだろうとは
思うのだが、方向性としては ちょっと新しいように思うので、「難しい」とか
「ダメっぽい」とか「ここから先で行き詰まった」くらいの実績は残しておいても
いいと思う。
コラッツ予想に関する「や



次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch