18/05/16 05:45:28.63 qlzfKH7q.net
>>362 >>364
Γ(s)の定義式を積分路変更することで容易に導けます
(Hankel の公式からでも導出可能ですが、リーマン面で考えないといけないので少し面倒になります)
定義式:Γ(1-s)=∫[0,∞] z^(-s) e^(-z) dz において積分路を実軸から虚軸に変更する
(厳密には半径rとRの1/4円弧と実軸と虚軸上の線分を結ぶ閉曲線を考えr→0,R→∞とする)と
Γ(1-s)=∫[0,∞] (it)^(-s) e^(-it) d(it)
=∫[0,∞] i^(1-s) t^(-s) (cos t -isin t) dt
となって、この式の両辺に i^(-1+s)=e^(πi(-1+s)/2)を乗じれば直ちに(1),(2)式が得られます
また(1)式が0<s<2でも成り立つことはs平面での解析接続より明らか