18/07/22 16:50:21.14 X11xpoqn.net
和算の問題です。
一つの円があります。
その円の中に、大、中、小の円を内接させます。
條件は、大、中、小の円は、一番外側の円に内接します。
大円は、中円と小円に外接します。
中円は大円と小円に外接します。
小円は、大円と中円に外接します
この場合、この4つの円の関係を求めてください。
出典」三上義夫「日本数学史」(この本は、「科学図書館」という
サイトに全文がPDFファイルとしてアップされています)
977:イナ
18/07/22 20:03:51.82 SEmuhAob.net
>>918
外側の円の半径:Я
大円の半径:R
中円の半径:R㊥
小円の半径:r
とすると、
Я>R+R㊥>R>R㊥>r
978:132人目の素数さん
18/07/22 20:53:32.75 XHMrpicM.net
大円の半径が3
中円の半径が2
小円の半径が1
のときの内側の円の半径は?
とかにしないと問題としては答えにくくね?
まぁこのケースはそんなに難しくないかもしれないけど。
この3円に外接するの方が難しいのかな?
数値もへぇって値になった記憶が
979:132人目の素数さん
18/07/22 20:57:42.67 XHMrpicM.net
>>920
この3円が内接する円の間違い。
確かへぇって値になったような。
980:132人目の素数さん
18/07/22 23:51:55.24 8X1Zeg9C.net
反転法使えばそんな難しくなさそうだけど、暗算できるほど簡単ではないな。
981:132人目の素数さん
18/07/23 00:45:50.63 rgc2cWMb.net
>>844
似た設定の問題がかなり昔の数オリにあったような。。
982:132人目の素数さん
18/07/23 07:31:23.87 wuj51AEp.net
>>923
>>871のこと?
983:イナ
18/07/23 08:16:34.35 7/0/1MEy.net
よって四つの円の包含関係は、
外側の円⊃大円
外側の円⊃中円
外側の円⊃小円
但し、大円、中円、小円はたがいに外接する。
前>>919
984:132人目の素数さん
18/07/23 10:11:04.09 +uNFdt3Z.net
デカルトの円定理
985:132人目の素数さん
18/07/23 10:15:09.77 8uzM1Baw.net
その単語が出てしまうと終了だな。
986:132人目の素数さん
18/07/23 12:19:19.88 BhRl/p7g.net
複素係数一変数多項式 f, g であって {f(x)}^2 + {g(x)}^2 = x を満たすものは存在するか。
987:132人目の素数さん
18/07/23 14:15:04.98 3TWNdk8g.net
>>928
たとえば f(x)=x+1/4, g(x)=ix-i/4
988:132人目の素数さん
18/07/23 17:17:16.75 KhSOAKcF.net
ごめん間違えた、
f^2 + g^3 = x を満たす多項式は存在するか
でした
989:132人目の素数さん
18/07/23 21:21:51.05 7FS8HckQ.net
>>930
できたか?
存在すると仮定する。
f(x)がxを因子に持てばg(x)もxを因子にもちv_x(左辺) ≧ 2、v_x(右辺) = 1により矛盾。
よってf(x)はxを因子に持たない。よってf(t^2)もtを因子に持たない。
与式より
g(t^2)^3 = (t - f(t^2)) (t + f(t^2))
であるが、(t-f(t^2),t+f(t^2)) = (2t,t+f(t^2)) = 1によりt-f(t^2)とt+f(t^2)は互いに素である。
よってg(t^2)の因子のうちt-f(t^2)の因子になっているものの積をh(t)、t+f(t^2)の因子になっているものの積をk(t)とおけば
h(t)^3 = c(t - f(t^2))、k(t)^3 = d(t + f(t^2))、cd = 1
となる定数c,dがとれる。
h,kをc,dの3乗根で割ったものに取り替えれば
h(t)^3 = t - f(t^2)、k(t)^3 = t + f(t^2)
となるとしてよい。
一方t-αがh(t)の因子なら-t-αはk(t)の因子であるからk(t) = e h(-t)となる定数eがとれる。
このとき
h(t)^3 - t = - f(t^2) = t - k(t)^3 = t - e^3 h(-t)^3
により
h(t)^3 + e^3 h(-t)^3 = 2t
となる。
ここで容易にg(x)の次数は奇数であり、h(t)とk(t)の次数は等しいからh(t)の次数も偶数である。
よって上の式の最高次からe^3 = -1がわかる。
よって
h(t) + h(-t) = 2t
を得るが左辺は偶関数により矛盾。
990:132人目の素数さん
18/07/23 23:46:59.29 jsKLvMqB.net
>>931
まちごうた。最後から2行目
h(t)^3 - h(-t)^3 = 2t
で左辺の次数は3(deg h)-1で5以上より矛盾。
991:132人目の素数さん
18/07/24 01:11:19.24 v83j+alb.net
>>931-932
改めて清書するとミスや余計な議論のオンパレードだけど、もう修正のせるとスレ汚しになるのでやめときます。
ホントはC(x)上の楕円曲線
Y^2 = - X^3 + x
の有理点についての議論でかっこよくやるのが通なんだろうけどオラには無理。
なんか数オリの解答みたいになってヤだけどこれしか思いつかん。
992:132人目の素数さん
18/07/24 01:17:52.25 rRTBzOQ4.net
>>930
メーソン・ストーサーズの定理(ABC予想の多項式版)を使ったら凄く簡単に出たw
もちろん、「存在しない」が答え。
993:132人目の素数さん
18/07/24 01:19:39.68 v83j+alb.net
>>930
なんかすごそう。
書いてたも。
994:132人目の素数さん
18/07/24 01:26:08.67 v83j+alb.net
>>934
>メーソン・ストーサーズの定理
これか!
URLリンク(ja.wikipedia.org)
すげぇ!ホントにあっという間にとける!!すばらしい!!
995:132人目の素数さん
18/07/24 04:25:23.69 lehQeRGl.net
>>931
レス遅くなりました。23時頃に一度投稿しようとして投稿規制くらった文章をそのまま載せときます。
最後の定理は既出でしたね
~~~~~~~~
>ここで容易にg(x)の次数は奇数であり、
以降がちょっと難しいですがその直前の式でほぼ矛盾が示せているので正解とします。
(直前の式の左辺を因数分解して、両辺の次数を比べ、左辺の3つの因数のうち少なくとも二つが次数0でなければならないことからも矛盾が示せます)
実はABC予想の多項式版の類似であるメーソン・ストーサーズの定理を使えば比較的簡単に解くことができるので、よければ調べてみてください
996:132人目の素数さん
18/07/24 06:21:54.98 bmjGlIcJ.net
>>937
ありがとうございます。
比較的どころかメーソン・ストーサーズの定理使えば瞬殺ですね。勉強しときます。
997:132人目の素数さん
18/07/24 17:51:22.07 xg2
998:jMb4Q.net
999:132人目の素数さん
18/07/26 04:23:17.15 gCZSgyqq.net
群Gの正規部分群NはZ(整数)と同型
G/NはZ/nZと同型
nは1より大きい整数
Gの構造を決定しろ
1000:132人目の素数さん
18/07/26 04:25:40.27 Si+0HJ5D.net
口の利き方に気を付けたまえ!
1001:132人目の素数さん
18/07/26 09:42:15.39 r9ee9dZW.net
>>940
以下x’:=x^(-1)とする。
N=<a>とし、b∈G\NをbNがG/Nの生成元となるようにとる。
準同型x→bxb’は同型N→Nを引き起こすがこのときaの像はa,a’のいずれかである。
(i) bab’ = aのとき。
このときG≌Z⊕Z/nZである。
(ii) bab’ = a’ のとき。
nが奇数とするとn = 2q + 1とおくとき
a = b^(2q+1)ab^(-(2q+1)) = bab’ = -a
となって矛盾するからnは偶数である。
逆にnが偶数のとき
<a,b|bab’ = a’,b^n=e>
はZのsemi trivial extensionであり、条件を満たす。
1002:132人目の素数さん
18/07/26 11:06:27.02 g7KCpv5X.net
>>832
返信遅くなって申し訳ない (>>826です)
超越基底を用いれば簡単になるであろうということ。
――――
何か鳩ノ巣原理を使う難問が欲しい
此れだけでは申し訳ないので幾つか投下:
(難問ではなく何も既知の筈)
・長さNの正整数から為る数列が2つ存在し, 数列を構成する数は1以上N以下である.
A, Bから其々空でない部分数列を適当に選ぶとき, 其々の総和を等しく出来るか.
・αが無理数の時, 次の不等式を満たす整数の組(p,q)が無限に存在することを示せ:
|α-p/q|<1/q²
序でに右辺をk/q²として不等式を満たす組が無限に存在する様な最小のkを求めると, k=1/√5になることが知られてる
母関数を使うらしく, 序でにk=1でも分母の自乗はx(>2)乗に変えた瞬間成り立たないそうだ(知ってるのは此処まで).
1003:132人目の素数さん
18/07/26 12:19:01.89 B8nOkJxx.net
【何故シヌの、〝JK″】 島津論文「安倍とオウムに接点」 露国防相「気づかれてないと思うな晋三」
スレリンク(liveplus板)
地震多すぎ! 日本は地震大国だから、は大ウソだった! ほら吹きの安倍が、地下核実験をやっている!
1004:132人目の素数さん
18/07/27 06:49:09.69 0WjqahXc.net
>>940
Zの自己同型は±1のみ
Zn→Z2はnが偶数なら0と全射nが奇数なら0のみ
よって
Z+Znか偶数ならZとZnの半直積
1005:82
18/07/27 07:59:20.49 sps923Uv.net
>>82の正解発表
>>87 (A)正解
>>85 (B)正解
1006:82
18/07/27 08:00:12.73 sps923Uv.net
【>>82(A)の模範解答】
以下、図形の内部には周も含める。
[補a]
幅1のルーローの三角形は、内部の任意の2点間の距離が1以下である。
半径1、中心角60°以下の扇形は、幅1のルーローの三角形の一部である。よって、内部の任意の2点間の距離が1以下である。 ■
[A]
5点ならば、円に内接する正五角形の各頂点に配置すれば、どの2点間の距離も1より大きくなる。
どの2点間の距離も1より大きくなるような6点の配置を考える。
円の中心に1点Aを配置すると、円の中心と内部の任意の点との距離は1以下だから、Aと他の5点との距離は全て1以下になる。よって、円の中心以外にAを配置する。
円を扇形で6等分すると、Aが2つの扇形X,Yの境界に乗るようにすることができる。別の点をX,Yに配置すると、[補a]より、Aとその点との距離は1以下になる。よって、X,Y以外の4つの扇形に残りの5点を配置する。
鳩の巣原理より、少なくとも2点は同じ扇形の内部になる。[補a]より、その2点間の距離は1以下になる。
したがって、どのように6点を配置しても、ある2点間の距離が1以下になる。
最小のmは6である。 ■
1007:82
18/07/27 08:02:00.38 sps923Uv.net
【>>82(B)の模範解答】
以下、図形の内部には周も含める。
[補b]
半径1/2の円の内部の2点間の距離は、直径の両端のときは1、それ以外のときは1未満である。
一辺1/2の正六角形は、半径1/2の円に内接する。よって、内部の2点間の距離は、最も遠い頂点どうし(3組ある)のときは1、それ以外のときは1未満である。
カップケーキ形(図の黄色部分)は、一辺1/2の正六角形の一部である。よって、内部の2点間の距離は、弧の両端のときは1、それ以外のときは1未満である。
弧の片側の端点を欠いたカップケーキ形(以下、単に「図形」)は、元のカップケーキ形の一部である。よって、内部の2点間の距離は1未満である。 ■
[B]
7点ならば、円の中心と、円に内接する正六角形の各頂点に配置すれば、どの2点間の距離も1以上になる。
どのような8点の配置も、ある2点間の距離が1未満であることを背理法で示す。
どの2点間の距離も1以上であるような8点の配置が存在すると仮定する。
URLリンク(imgur.com)
半径1の円は、7つのパーツ
一辺1/2の正六角形ABCDEF、図形HBA(G)、図形ICB(H)、図形JDC(I)、図形KED(J)、図形LFE(K)、図形GAF(L)
で覆うことができる。
鳩の巣原理より、少なくとも2点は同じパーツの内部にある。[補b]より、その2点は正六角形のパーツの内部にある。AとDにあるとして一般性を失わない。
[補b]より、A,Dを含む図形4つには別の点はない。また、[補b]より、図形LFE(K)とICB(H)にはそれぞれ最大で1点しかない。
このとき、合計で最大でも4点しか配置されていないため矛盾。仮定は誤りであった。
したがって、どのように8点を配置しても、ある2点間の距離が1未満になる。
最小のnは8である。 ■
1008:82
18/07/27 08:03:17.37 sps923Uv.net
出典
(A)
URLリンク(www.cut-the-knot.org)
このサイトに証明が2つ載っている。
1つ目は上記。
2つ目は>>87と同じ方針で最後に[補a]を使わない方法である(三角形の内角の大小関係を使っている)。
(B)
URLリンク(math.stackexchange.com)
1点を欠いた図形を考えるのがミソである。この一工夫で証明はかなり楽になる。クレバーな方法。
(B)の画像はGeoGebraで自作した。
この手の問題は
「定幅図形(またはそれらに内包される図形)で元の図形を被覆/分割して、鳩の巣原理に持ち込む」
のが定石だが、効率の良い被覆や分割は発見に試行錯誤を要することが多い。
「図形Aに、どのようにk個以上の点を配置しても、ある2点間の距離がd以下/未満になる」
みたいな一般化は厳しいだろう。
1009:188
18/07/27 08:05:38.26 sps923Uv.net
>>188の正解
正n角形について、辺AB,BC,CD…の順に鏡映を取っていく操作を
nが偶数ならばn-1回
nが奇数ならば2n-1回
それぞれ繰り返せば、l(n)を「平行な2辺間を結ぶ直線か折れ線の長さ」に帰着することができる。折れ線のときは直線のときより長いことを利用すれば、幾何的にl(n)の最小が求まる。
もちろん>>189みたいに式で解けるならそれに越したことはないが…
1010:132人目の素数さん
18/07/27 09:50:50.05 NlkV/5Nh.net
>>856
解答です。
PQRSにおける接線の交点を結んで得られる四角形をXYZWとする。
XからCに引いた2接線の接点の交点をx、y,z,wに対するそれをy,z,wとする。
仮定よりXYZWは円D上にあるしてよい。
このときDのCに関する反転をdとするとxyz
1011:wはd上である。 よって主張は成立する。□
1012:132人目の素数さん
18/07/27 22:17:47.94 uXdC9xjt.net
一辺の長さ1の正五角形の頂点を全て結ぶ分岐あり曲線の長さの最小値を求めよ
1013:132人目の素数さん
18/07/27 22:19:49.89 uXdC9xjt.net
正n角形の頂点を全て結ぶ分岐あり曲線の長さが最小となるとき、分岐点の角度は必ず120°となることを証明せよ
1014:132人目の素数さん
18/07/27 22:22:17.06 uXdC9xjt.net
>>953
ごめんこれ嘘
なんでもない
1015:
18/07/28 00:32:41.08 6VVd4WCT.net
>>952
2π
∵五角形の中に桜の花びらを描くように半径1の弧を各頂点から描くと、
弧の最小単位
2π×(36°/360°)
が十個、頂点と分岐点を交互に通るかたちになる。
前>>925開運!!
1016:132人目の素数さん
18/07/28 00:38:05.20 EnyRsA6W.net
>>953
n=3 のときはフェルマー点
1017:535
18/07/28 07:52:44.92 o+vDTN8W.net
>>535の正解発表
【Step 1 与式の分割】
例えば最初の分数式について
(a-b)(a-c)/(a+b+c)
=(1/2)(a-c)(a-c)/(a+b+c)
+(1/2)(a-c)(a-2b+c)/(a+b+c)
は容易に確認できる。
そこで
s=a+b+c+d
A'=(a-c)(a-c)/(s-d)
A''=(a-c)(a-2b+c)/(s-d)
B'=(b-d)(b-d)/(s-a)
B''=(b-d)(b-2c+d)/(s-a)
C'=(c-a)(c-a)/(s-b)
C''=(c-a)(c-2d+a)/(s-b)
D'=(d-b)(d-b)/(s-c)
D''=(d-b)(d-2a+b)/(s-c)
と置くと
(与式の左辺)
=(1/2)[A'+A''+B'+B''+C'+C''+D'+D'']
=(1/2)[(A'+B'+C'+D')+(A''+B''+C''+D'')]
と分割できる。
1018:535
18/07/28 07:55:37.99 o+vDTN8W.net
【Step 2 A'+B'+C'+D'の評価】
√A',√B',√C',√D',√(s-a),√(s-b),√(s-c),√(s-d)にコーシー・シュワルツの不等式を適用すると
[A'+B'+C'+D'][(s-a)+(s-b)+(s-c)+(s-d)]
≧[{√A'}*{√(s-a)}+{√B'}*{√(s-b)}+{√C'}*{√(s-c)}+{√D'}*{√(s-d)}]^2 …△
⇔3s(A'+B'+C'+D')≧(|a-c|+|b-d|+|c-a|+|d-b|)^2
⇔3s(A'+B'+C'+D')≧(2|a-c|+2|b-d|)^2
相加相乗平均の不等式より
2|a-c|+2|b-d|≧2√(2|a-c|*2|b-d|)>0
だから
(2|a-c|+2|b-d|)^2≧16|a-c||b-d| …▲
よって
3s(A'+B'+C'+D')≧16|a-c||b-d|
⇔A'+B'+C'+D'≧16|a-c||b-d|/(3s) …①
1019:535
18/07/28 08:02:39.32 o+vDTN8W.net
【Step 3 A''+B''+C''+D''の評価】
(a-c)(a-2b+c)(s-b)+(c-a)(c-2d+a)(s-d)
=(a-c)[(a+c-2b)(a+c+d)-(a+c-2d)(a+c+b)]
=(a-c)[{(a+c)^2+(d-2b)(a+c)-2bd}-{(a+c)^2+(b-2d)(a+c)-2db}]
=(a-c)[(d-2b-b+2d)(a+c)]
=3(a-c)(d-b)(a+c)
またM=(s-d)(s-b)とおくと
M=s(s-b-d)+db=s(a+c)+bd
A''+C''
=[(a-c)(a-2b+c)(s-b)+(c-a)(c-2d+a)(s-d)]/[(s-d)(s-b)]
=3(a-c)(d-b)(a+c)/M
同様にN=s(b+d)+acとおくと
B''+D''=3(b-d)(a-c)(b+d)/N
よってW=(b+d)M-(a+c)Nとおくと
W=(b+d){s(a+c)+bd}-(a+c){s(b+d)+ac}=(b+d)s(a+c)+(b+d)bd-(a+c)s(b+d)-(a+c)ac=(b+d)bd-(a+c)ac
A''+C''+B''+D''
=3(a-c)(b-d)[(b+d)/N-(a+c)/M]
=3(a-c)(b-d)[(b+d)M-(a+c)N]/(MN)
=3(a-c)(b-d)W/(MN)
ここで
MN={(a+c)s+bd}{(b+d)s+ac}=(a+c)(b+d)s^2+{(a+c)ac+(b+d)bd}s+bdac
>{(a+c)ac+(b+d)bd}s
x>0,y>0のときx+y>|x-y|より
{(a+c)ac+(b+d)bd}s>|(a+c)ac-(b+d)bd|s=|W|s
よって
MN>|W|s⇔(1/s)>|W|/(MN)
ゆえに
|A''+C''+B''+D''|=3|a-c||b-d||W|/(MN)≦3|a-c||b-d|/s …▼
したがって
A''+C''+B''+D''≧-3|a-c||b-d|/s …②
1020:535
18/07/28 08:06:13.82 o+vDTN8W.net
【与式の証明と等号成立条件】
①と②より
(与式の左辺)
=(1/2)[(A'+B'+C'+D')+(A''+B''+C''+D'')]
≧16|a-c||b-d|/(3s)-3|a-c||b-d|/s
=16|a-c||b-d|/(3s)-3|a-c||b-d|/s
=7|a-c||b-d|/(3s) …☆
明らかに
7|a-c||b-d|/(3s)≧0=(与式の右辺) …★
よって
(与式の左辺)≧(与式の右辺)
(与式の等号が成立する)
⇔(☆、★の等号が成立する)
⇔(①、②、★の等号が成立する)
⇔(△、▲、▼、★の等号が成立する)
▲の等号成立条件は
2|a-c|=2|b-d|⇔|a-c|=|b-d|
▼と★の等号成立条件は
|a-c|=0∨|b-d|=0⇔a=c∨b=d
よって
a=c∧b=d
このとき△でも等号が成立している。
したがって、与式の等号成立条件はa=c∧b=d ■
1021:535
18/07/28 08:08:38.70 o+vDTN8W.net
他の
1022:2つの模範解答もどう発想するのか判らない解答であるうえ、ただ煩雑で汚いので省略。 リンク先で見てください。 出典:IMO2008SL-A7 https://www.imo-official.org/problems/IMO2008SL.pdf
1023:132人目の素数さん
18/07/28 08:13:53.49 Sc9m8D2O.net
|a b c d|
|b bx d cx|
|c d ay by|
|d cx by axy|
を因数分解せよ
1024:132人目の素数さん
18/07/28 09:35:34.58 pdtqHzrG.net
>>418
解答です。
R=F[T]/(T^2+1)、X1={(x,y,z)∈X | z≠0}、X2={(x,y,z)∈X | z=0}
とおいてR^をRの可逆元のなす群としN:R→Fをノルム写像とする。
またTの類T+(T^2+1)をtとする。
x,y∈FにたいしてN(x+yt) = x^2+y^2である。
x∈Fでx^2+1≠0かつx^2+1がGに属さないものがとれる。
(∵1~q-2のうちa∈G,a+1はGに属さないaをとってx^2=aとなるxをとればよい。)
このときN(x+t)=x^2+1はGに属さず0でもないのでx+tはR^\N^(-1)(G)に入る。
よってR^/N^(-1)(G)はR^の真部分群であり準同型定理によりZ/2Zであるとわかる。
とくに#N^(-1)(-G) = (1/2)#R^である。
以上により
#X = 2・(1/2)#R^ + (R\R^) = #R^ = q^2
である。
以下(a/q)を平方剰余記号とする。
(-1/q)=-1のときX2={(0,0,0)}であり#X2=1である。
(-1/q)=1のときu^2=-1となるu∈FをとればX2={(x,±ux,0)}であるから#X2=2q-1である。
以上により
#Y=#X-3#X2+3-1
=q^2-1 (q≡3 mod 4)、=q^2-6q+5 (q ≡ 1 mod 4)
である。
つぎに
Y2={(x,y,z) | x=y,xyz≠0}
とおくとき(-2/q)=-1ならばばY2=∅であり、
(-2/q)=1ならばv^2=-2となるv∈FをとればY2={(x,x,±vx)|x∈F^}であるから#Y2=2q-2である。
また
#Z=#Y-3#Y2
であるから以上と第2補充法則により
#Z=q^2-12q+11 (q ≡ 1 (mod 8))
#Z=q^2-6q+5 (q ≡ 3,5 (mod 8))
#Z=q^2-1 (q ≡ 7 (mod 8))
を得る。
1025:132人目の素数さん
18/07/28 09:38:12.21 z2BC7zek.net
log2=0.3010, log3=0.4771が与えられている.
ここから, log11の小数第2位の値を求めよ.
1026:132人目の素数さん
18/07/28 09:41:05.15 pdtqHzrG.net
>>962
>|a b c d|
>|b bx d cx|
>|c d ay by|
>|d cx by axy|
determinant(matrix([a,b,c,d],[b,b*x,d,c*x],[c,d,a*y,b*y],[d,c*x,b*y,a*x*y])),factor;
a^3*b*x^2*y^2-a*b^3*x*y^2-a^2*b^2*x*y^2+b^4*y^2-a*b*c^2*x^2*y-a^2*c^2*x^2*y-a*b*d^2*x*y-a^2*d^2*x*y+2*b^2*c*d*x*y+6*a*b*c*d*x*y-2*b^2*c^2*
x*y-2*b^2*d^2*y+c^4*x^2-2*c^2*d^2*x+d^4
????
1027:132人目の素数さん
18/07/28 10:40:19.76 bjlcOHL6.net
>>962
とりあえず2行2列のbはaのまちがいっぽいけどそれでもまだ既約みたいやね。
1028:132人目の素数さん
18/07/28 10:43:17.16 eDTZE8Ag.net
>>962
こう?
determinant(matrix([a,b,c,d],[b,a*x^2,d,c*x^2],[c,d,a*y^2,b*y^2],[d,c*x^2,b*y^2,a*x^2*y^2])),factor;
(a*x*y-b*y-c*x+d)*(a*x*y-b*y+c*x-d)*(a*x*y+b*y-c*x-d)*(a*x*y+b*y+c*x+d)
1029:132人目の素数さん
18/07/28 13:37:27.98 25At2aHe.net
>>955
今更だけど不正解
少なくとも4つの辺を結べば5点を結べるから4より小さくないとおかしい
1030:132人目の素数さん
18/07/28 14:57:21.13 z4N8++BV.net
>>953
分岐点に隣接する3点の作る三角形の外心と、分岐点が一致する
ということでいいんでない?
1031:132人目の素数さん
18/07/28 15:11:48.34 z4N8++BV.net
いや、>>969はたぶん違うな……
むしろ分岐点の角がすべて120°のほうが正しい気がしてきた
1032:イナ
18/07/28 15:2
1033:0:45.41 ID:6VVd4WCT.net
1034:132人目の素数さん
18/07/28 15:24:47.07 dqaEH9OC.net
続けたまえ
1035:イナ
18/07/28 15:37:26.36 6VVd4WCT.net
>>972わかった。十個の弧のうち四個は省けるね。
2π×(36゚/360゚)人人
/_/×6=4π/5(_^_)
/_/_/_/_/(__)
/_/_/_/_/(^。^))
/_人人_/_/_(_っ┓
/_(_)_)_/_/◎┻υ◎
/_( __)_/_/_/_/_
/_(_(`)_/_/_/_/_
/_(υ_)┓_/_/__/_/
/◎υ┻-◎_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/屁でもねえや。前>>971それよかいいワープロねえか。
1036:132人目の素数さん
18/07/28 16:14:37.96 Sc9m8D2O.net
>>966
axの間違い
1037:132人目の素数さん
18/07/28 16:15:36.89 Sc9m8D2O.net
>>967
も1つ
abcdの多項式でxyについては2次拡大まで使うと1次4つの積に
1038:132人目の素数さん
18/07/28 16:21:20.32 RosE4Rin.net
>>952
角度120度の前提で 3.891156823 って数値が出たけど、これより良い結果ある?
URLリンク(i.imgur.com)
1039:132人目の素数さん
18/07/28 16:24:52.44 EnyRsA6W.net
ax = f, cx = g とおくと
|a, b, c, d|
|b, f, d, g|
|c, d, ayy, byy|
|d, g, byy, fyy|
= {(af-bb)yy + (cg-dd)}^2 - (ag+cf-2bd)^2 yy
= {(af-bb)yy +(ag+cf-2bd)y +(cg-dd)}{(af-bb)y^2 -(ag+cf-2bd)y +(cg-dd)},
1040:132人目の素数さん
18/07/28 16:40:58.48 Sc9m8D2O.net
>>977
もひとつ
1041:132人目の素数さん
18/07/28 16:56:48.40 zqnKg1oN.net
>>971
そう、一つの頂点を一回通ればいいってこと
あと直線も曲線の一部
>>969,970
正7角形の場合、周をなぞるのが一番短いから角度は120°じゃないって言おうとしたけどジャンクションではないね
ジャンクションに限定するなら120°は成り立ちます
「プラトーの法則」
>>976
不正解です
実は左右非対称になる
1042:イナ
18/07/28 17:37:50.18 6VVd4WCT.net
直線も曲線のうち!?
;;;;;;;;;;;人人;;;;;;
;;;;;;;;;;(_;^_);;;;;
;;;;;;;;;;(_^;_);;;;;
;;;人人;;;(^。^;);;;;;
;;(_)_);;(_っ┓;;;;
;;(_(_);◎゙┻υ◎゙;;
;;(_(`);;;;;キコキコ……
;;(υ_)┓;;;;;;;;;;;
◎゙υ┻-◎゙_/_/__/_/
/_/キコキコ……/_/_/_/_/_/_/_/_/きっといい地境がみつかる。前>>973
1043:イナ
18/07/28 18:05:00.89 6VVd4WCT.net
前>>980
対角線2つ=1+√5
対角線の一つに残りの頂点から引いた垂線={√(5+2√5)}/2-{√(10-2√5)}/4
分割線=1+√5+{√(5+2√5)}/2-{√(10-2√5)}/4
1044:132人目の素数さん
18/07/28 18:38:01.92 Sc9m8D2O.net
>>967
正解だったどもスマン
1045:132人目の素数さん
18/07/28 18:40:27.16 Sc9m8D2O.net
ちなみに8次でも同じような問題できる
2^n次でできるのかも
1046:132人目の素数さん
18/07/28 19:32:48.35 57kIc8+e.net
>>2
7+8-5=10
俺の勝ち
ちなみに
ID:AT99r3l3(>>24,29) → 9+9/(3*3)=10
1047:132人目の素数さん
18/07/28 19:33:18.55 57kIc8+e.net
そろそろ次スレを
1048:132人目の素数さん
18/07/28 20:56:04.78 zqnKg1oN.net
>>981
不正解
>>979でも言ったけど左右対称じゃない
1049:132人目の素数さん
18/07/28 20:58:42.11 zqnKg1oN.net
>>981
しかもそれ4より大きいじゃん
1050:132人目の素数さん
18/07/28 21:04:35.57 5RD8Md9I.net
数列{a_n}を以下のように定める。
a_1 = 3
a_(n+1) = (a_n)^2 - 2
この時、 a_n が合成数になるような n は存在するか。
1051:132人目の素数さん
18/07/28 21:36:52.34 Nf1txf93.net
>>988
mod 1087で考えると
a_1≡3
a_2≡7
a_3≡47
a_4≡33
a_5≡0
明らかにa_5>1087なのでa_5は合成数
1052:
1053:132人目の素数さん
18/07/28 21:46:55.05 boOQAkuB.net
ちなみにmod 127でも
a_1≡3
a_2≡7
a_3≡47
a_4≡48
a_5≡16
a_6≡0
a_6>127よりa_6は合成数
1087も127も勘で見つけた
1054:132人目の素数さん
18/07/28 22:05:52.09 ttDOnSiN.net
>>990
正解、1087は見つけられんかったわ すごい
pがメルセンヌ素数の時にフィボナッチ数列がmodpでp+1を周期に持つ条件やら何やらを考えてて127を偶然見つけたけど、
メルセンヌ素数かどうかの判定法でリュカテストというのがあって、殆ど同じことやってたのを問題出してから知った…
1055:イナ
18/07/28 22:32:30.32 6VVd4WCT.net
前>>981対角線2つのほかに、あえて対称じゃない分割線を一本引いたのに、対称と言われた。
―――――
①対角線1つ=(1+√5)/2
②対角線から最寄りの頂点への垂線=(1/4)√(10-2√5)
③中心角72°の扇形の弧=2π/5
④扇形の弧から残りの頂点への垂線={(1+√5)/2}-1
―――――
①+②+③+④=√5+2π/5+(1/4)√(10-2√5)
=4.08049029……ぉしい!!
1056:132人目の素数さん
18/07/28 22:40:01.22 boOQAkuB.net
まあa_5, a_6をwolframに因数分解してもらって、modで書き直しただけなんだけど
余談だが、素数を無限に生成する関数
強い順に
f(n)=p_n
{f(n)}=Pかつf(m)≠f(n)
{f(n)}=P
{f(n)>0}=P
は存在するが、いずれも人為的なものであり実用性は乏しい(下の論文では"engineered"と表現している)
漸化式で定義された数列では
a_1=7
a_n=a_(n-1)+gcd(n, a_(n-1))
の階差数列b_nは1か奇素数になる
しかも全ての奇素数が現れるという
{a_n}=7,8,9,10,15,18,19,20,21,22,33,36,37,…
{b_n}=1,1,1,5,3,1,1,1,1,11,3,1,…
URLリンク(cs.uwaterloo.ca)
1057:132人目の素数さん
18/07/28 22:45:27.23 XEewS8qw.net
>>983
そりゃできるんじゃね?
|a b c d|
|b ax d cx|
|c d ay by|
|d cx by axy|
なら行列は0行0列から数えるとして
1の位が0の行、つまり0行目と2行目に√xをかけ、1の位が1の列、つまり1列目と3列目を√xで割る。
同じことを2の位について√yで行えば√x=u、√y=vとして
|auv bv cu d|
|bv auv d cu|
|cu d auv bv|
|d cu bv auy|
となって結局
|A B C D|
|B A D C|
|C D A B|
|D C B A|
を考えることになる。
2行目+3行目+4行目を1行目にたせば1行目は全部A+B+C+Dだからdetは(A+B+C+D)で割り切れる。
ー2行目+3行目ー4行目を1行目にたせば1行目は全部A-B+C-Dだからdetは(A-B+C-D)で割り切れる。
2行目ー3行目ー4行目を1行目にたせば1行目は全部A+B-C-Dだからdetは(A+B-C-D)で割り切れる。
ー2行目ー3行目+4行目を1行目にたせば1行目は全部A-B-C+Dだからdetは(A-B-C+D)で割り切れる。
A^の係数は1だからdet = (A+B+C+D)(A-B+C-D)(A+B-C-D)(A-B-C+D)。
これ2^2でやったけど2^nでもできると思う。
1058:132人目の素数さん
18/07/28 22:58:36.93 Sc9m8D2O.net
>>994
なるほど
1059:132人目の素数さん
18/07/28 23:00:35.26 Sc9m8D2O.net
2^nだとどう並べたら良いかな
1060:132人目の素数さん
18/07/28 23:17:01.50 XEewS8qw.net
とりあえず2^2のパターンを2つつかって2^3は
A B C D E F G H
B A D C F E H G
C D A B G H E F
D C B A H G F E
E F G H A B C D
F E H G B A D C
G H E F C D A B
H G F E D C B A
でこのパターンをまた文字変えて並べて…でいけると。
1,-1のパターンは
n=1のとき1,1と1,-1
n=2のとき1,1,1,1と1,-1,1-1と1,1,-1,-1と1,-1,-1,1 (2つコピペして並べたものとそのままと-1倍したものを並べたもの)
n=3のとき1,1,1,1,1,1,1,1,と1,1,-1-1,1,1,-1-1と1,-1,1,-1,1,-1,1,-1と1,-1,-1,1,1,-1,-1,1と…
でいけると思う。このパターンで各行を足したり引いたりしたら全成分同じ値が並ぶ行が出てくると思う。
1061:132人目の素数さん
18/07/28 23:46:15.45 Sc9m8D2O.net
A=[[a,b],[b,a]]という形式の行列でテンソル積を取っていけばよいのかな>>997
A*A=[[aA,bA],[bA,aA]]
A*A*A=[[aA*A,bA*A],[bA*A,aA*A]]
みたいな
ただし
aA=[[aa,ab],[ba,bb]]
の成分は非可換でA*^nの成分はaaa…aからbbb…bまでの2^n通りで
1062:132人目の素数さん
18/07/28 23:54:37.19 Sc9m8D2O.net
そしたら
|A*^(n+1)|=|[(a+b)A*^n,(a+b)A*^n],[bA*^n,aA*^n]|=|[a+b)A*^n,O],[bA*^n,(a-b)A*^n]|=|(a+b)A*^n||(a-b)A*^n|
から上手く因数分解した形で求められそう
1063:132人目の素数さん
18/07/28 23:58:12.29 XEewS8qw.net
>>998
テンソル積でうまく表現できるかもですね。
いま思いついたんだけどGを可換有限群としてGの元gに対応する不定元Agを用意しておいてg行h列がAghである行列にすればよさそう。
GがZ/2Zをn個直積した場合が今回の例でG=Z/nZの場合が巡回行列の行列式の理論になる。
その行列式はGの既約指標x(g)にたいしてΣ[g] x(g)Agの形の一次式をn個の指標全体でかけ合わせたものになると思う。
それで今回の話も巡回行列の行列式の理論も同様に説明できるみたい。
1064:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 159日 23時間 37分 2秒
1065:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています