面白い問題おしえて~な 26問目at MATH
面白い問題おしえて~な 26問目
- 暇つぶし2ch975:`~~~~~~~ a∈V, S⊂V に対して a+S={a+s: s∈S} と定める。 適当な x∈X, y∈Y をとれば |-x+X|=|X|, |(-x+X)+(-y+Y)|=|X+Y| 等が成り立つので、 0∈X,Y の場合のみを考えればよい。 X∩(-y+Y)≠X が成り立つような y∈Y が存在する時、次の操作を考える。 (操作)「X'=X∩(-y+Y), Y'=X∪(-y+Y) とし、 XをX'に、YをY'に置き換える」 この操作により、|X|は減少し、|X|+|Y| は保たれる。 また、X'+Y'⊂X+(-y+Y) より、|X+Y| は非増加となる。新しいX,Yはどちらも0を元に持つ。 この操作は、|X|の狭義単調減少性により、有限回でできなくなる。 このような最終状態のX,YをそれぞれP,Qとおくと、操作ができないことから、任意のq∈Qについて P∩(-q+Q)=P が成り立つ。 ゆえに、q+P⊂Q より、 Q+P⊂Q. したがって、Q+<P>=Q. (ただし、<P>はPが張るベクトル空間。) これより、元を足すことによる<P>のQへの作用を考えることができるが、この作用による任意の軌道は|<P>|個の元を持つので、|Q| は |<P>| の倍数。…[1] また、|Q|+|P| = |X|+|Y| > mp^k より |Q| > mp^k - |<P>| となる。 …[2] |<P>| ≦ p^k の場合、[1]と[2]より |Q| ≧ ([2]の右辺)+|<P>| = mp^k. |<P>| ≧ p^(k+1) の場合、 <P>⊂Q より |Q|>mp^k. したがって、いずれの場合も |P+Q| ≧ |Q| ≧ mp^k. 操作により|X+Y|は非増加であったから、 |X+Y| ≧ |P+Q| ≧ mp^k. □
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch