面白い問題おしえて~な 26問目at MATH
面白い問題おしえて~な 26問目 - 暇つぶし2ch972:132人目の素数さん
18/07/22 01:53:47.71 1DdlAJLc.net
>>914
>X,Y⊂F^n が空でない時、 |X|+|Y|>2^k ならば |X+Y|≧2^k
なんと、そんな定理も成り立つのか (^o^)
実は、>>896 の F_p バージョンである次の定理が、>>908 と同じやり方で証明できる。
――――――――――――――――
定理:p は素数とする。V は有限次元の F_p ベクトル空間とする。
k≧0 と A⊂V は|A|> p^{k-1} を満たすとする。このとき、
|Σ[i=1~p] A|≧ p^k
が成り立つ。ただし、Σ[i=1~p] A := { Σ[i=1~p] a_i|a_1,…,a_p∈A }
と定義する。
――――――――――――――――
この定理を
>X,Y⊂F^n が空でない時、 |X|+|Y|>2^k ならば |X+Y|≧2^k
と見比べると、たぶん次の定理も成り立つのかな (^o^)
――――――――――――――――
定理(?): p は素数とする。V は有限次元の F_p ベクトル空間とする。
k≧0 と空でない X_1,X_2,…,X_p⊂V は Σ[i=1~p]|X_i|> p^k を
満たすとする。このとき、|Σ[i=1~p] X_i|≧ p^k が成り立つ。
――――――――――――――――


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch