18/03/15 19:55:30.54 Vea/5imI.net
>>83
>>原点は2-2-2-2型と3-3-2型(3は135ダブりか246ダブりのみ)からの計算
aaaa(aaaa)~型: 3通り * 8!/(4!4!)
aaab(aaab)~型: 6通り * 8!/(3!3!)
aabb(aabb)~型: 3通り * 8!/(2!2!2!2!)
aabc(aabc)~型: 3通り * 8!/(2!2!)
(ABC)^2*AA~型: 6通り * 8!/(3!2!2!)
の21通り合計、54810ですね。
(※aに対し、「a~」で、aと反対の方法を、A,B,Cは、お互い120度をなす方向を表し、ABCで元の位置に戻ります。)
(※二つの数字は、方向パターンと並べ替えパターン)
この方法は、「型の列挙」に漏れや重複がないか核心で、別の独立な方法で確認できたなら、自信が持てますよね。
軸の方の
Σ[k=0,4]2^k×2^k×2^(8-2k)×8!/((8-2k)!k!k!) =283392=1107*2^8
はシンプルですね。