18/04/15 14:33:10.20 MMDE1Y6Y.net
>>229
n^2-n-1はn=1/2で対称なのでΣ[n=1,∞]1/(n^2-n-1)=(1/2)Σ[n=-∞,∞]1/(n^2-n-1)
f(z)=πcot(πz)/(z^2-z-1)と置いて
(1-i)(N+1/2),(1+i)(N+1/2),(-1+i)(N+1/2),(-1-i)(N+1/2)を頂点とする正方形の周囲を
反時計回りに回る積分∫[C]を考えると、留数定理より
∫[C]f(z)dz = Res[z=(1-√5)/2]f(z)+Res[z=(1+√5)/2]f(z)+Σ[n=-N,N]Res[z=(1-√5)/2]f(z)
=-πcot(π(1-√5)/2)/√5+πcot(π(1+√5)/2)/√5+Σ[n=-N,N]1/(n^2-n-1)
=-2πtan(π√5/2)/√5+Σ[n=-N,N]1/(n^2-n-1)
ここでN→∞とすると、C上で|f(z)|=O(1/N^2)だから|∫[C]f(z)dz|→0
したがって
Σ[n=1,∞]1/(n^2-n-1)=πtan(π√5/2)/√5