18/03/09 22:03:51.27 sxkJNDKJ.net
>>484 つづき
関連4
URLリンク(toodifficult.seesaa.net)
確率変数の理解 世の中わからないことだらけ posted by 無知の人 2015年12月06日
(抜粋)
概説
(Ω,F,P) を確率空間とする。
確率変数は写像X:Ω→Rで、任意のA∈B(R)においてX?1(A)∈Fを満たすもの。
つまり、「Ωのσ-加法族」というよくわからないものから、「実数のσ-加法族」というわかりやすいものに移す写像ということである。
なぜ逆像で定義するのか
「Ωのσ-加法族」というよくわからないものから、「実数のσ-加法族」というわかりやすいものに移す写像ならば、「任意のω∈FにおいてX(ω)∈B(R)となる写像」を考えればいいような気もする。
これらの事象もなんらかボレル集合に割り当てなくてはいけないとなると、これは相当悩ましいし、そんなことで悩むのは無意味である。
なので、あえて逆像で定義して、そういったどうでもいいことが必ずしもボレル集合に割り当たってなくてもいいようにしてある。
じゃあ、ボレル集合側の微妙な要素はどのように処理するかである。
Fはσ-加法族であるので要素にΦを必ずもっているのだから、Φに割り当ててしまえばいい。
先のサイコロの例でいえば[3.1,3.9]というボレル集合について、X?1([3.1,3.9])=Φということになる。
(引用終わり)
以上