暇つぶし2chat MATH
- 暇つぶし2ch516:132人目の素数さん
18/03/07 20:33:19.67 pewxhlhY.net
>という直観も、R の時点で既に間違っていることになる。
スレ主の直観は大抵間違っている
そしてスレ主は教科書よりも自分の直観を信じるw

517:132人目の素数さん
18/03/08 04:14:26.79 /uF9jjn1.net
URLリンク(goodlg.seesaa.net)

518:132人目の素数さん
18/03/08 17:07:32.60 hgtFiBmd.net
おっちゃんです。
見に来ただけ。
じゃ、おっちゃん寝る。

519:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/09 10:46:37.28 pTn6lfeY.net
>>471
”buzz”は、種本があってね(^^
URLリンク(natalie.mu)
乃木坂46白石麻衣、「Pen」“バズる美女”特集号表紙に登場 ナタリー 2018年2月1日

520:132人目の素数さん
18/03/09 14:35:34.23 T+PN5jiP.net
ネタがマンネリ化してなかい?
誰かスレ主が飛びつきそうネタをプリーズ

521:DJ学術 
18/03/09 15:31:22.64 c5InzoE+.net
スージ ネタニアフ。

522:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/09 21:56:53.49 sxkJNDKJ.net
>>467-469
ほんとだな・・、おれ発狂してるね(^^
(自分の引用>>462より)
URLリンク(ja.wikipedia.org)
完備測度
カントール集合はボレル集合であるが、測度ゼロであり、そのベキ集合の濃度は実数の濃度よりも厳密に大きい。
したがってカントール集合には、ボレル集合に含まれないような部分集合が存在する。すなわち、ボレル測度は完備ではない。
(引用終り)
ここが、自分で引用していながら、全く読めてなかったな・・・
えーと、ボレル集合は下記か・・。ほんと勉強不足で、分ってないね~
”ボレル集合族は空間の開集合から、 G → G_δσ なる操作を最小の非可算順序数回反復的に適用して「生成」することができる。”か
URLリンク(ja.wikipedia.org)
ボレル集合
(抜粋)
数学におけるボレル集合(ボレルしゅうごう、英: Borel set)は、位相空間の開集合系(あるいは閉集合系)から可算回の合併、交叉、差を取ることによって得られる集合の総称である。
ボレル集合族の生成
言わんとすることは、「ボレル集合族は最小の非可算順序数 ω1 に対する Gω1 に他ならない」ことである。
即ち、ボレル集合族は空間の開集合から、
G → G_δσ
なる操作を最小の非可算順序数回反復的に適用して「生成」することができる。
(引用終り)
つづく

523:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/09 21:57:36.22 sxkJNDKJ.net
>>480 つづき
関連1
URLリンク(www.yasuhisay.info)
ボレル集合体とはなんぞや yasuhisa's blog 2008-06-05
(抜粋)
ボレル集合体
上のはルベーグ積分から確率論 (共立講座 21世紀の数学)を読んでいたんだけど、以下はルベーグ積分30講 (数学30講シリーズ)を読んだして書いてる。
可算個の開集合の共通部分として表わされる集合をGδ集合と言う。可算個の閉集合の和集合として表わされる集合をFσ集合と言う。
ん。上のからいくとGδとかFσは必ずしも開集合であるとか閉集合であるとは言えない集合のことなんだな。で、GδとかFσに対して色々な操作をしていくことでまた集合を作り出していく。どういう操作かと言えば。
Gδ集合の可算個の和集合を取ると、この集合は一般的には、Gδ集合でもFσ集合でもない。このような集合をGδσ集合という。同様に、Fσ集合の可算個の共通部分として表わされる集合をFσδ集合という。
こんな操作。
積集合を取った集合がいくつかあって、その和集合を考えるもの
和集合を取った集合がいくつかあって、その積集合を考えるもの
という風になっているんっだね。で、前回にやった逆の操作(積なら和、和なら積)という操作をどんどんどんどん繰り返していく。すると部分集合族の系列から新しいタイプの集合が次々と得られる。そしてこの操作をやって得られるRkの部分集合のことをRkのボレル集合と言う。おお、ボレル集合が登場した!!
ボレル集合は、すでに可測であるということが知られている開集合と閉集合から、可算個の和と共通部分と取るという操作を高々加算回繰り返して得られるのだから、これらはすべて可測な集合である、ということが分かる。これから「Rkのボレル集合はすべて可測である」という定理が導ける。これは便利そうな性質というか定理だなー。
(引用終り)
つづく

524:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/09 21:58:49.38 sxkJNDKJ.net
>>481 つづき
関連2
URLリンク(rikei-index.blue.coocan.jp)
可測集合、ボレル集合 理系インデックス
(抜粋)
定義 ( ボレル集合 )
∪n を開集合とする。
Fn を閉集合とする。
次のような集合を考える。
(*1)∪n=1~∞ Un , ∩n=1~∞ Fn
(*2)∪m=1~∞ ∩n=1~∞ Un,m , ∩n=1~∞ ∪m=1~∞ Fn,m
(*3)∩p=1~∞ ∪m=1~∞ ∩n=1~∞ Un,m,p , ∩p=1~∞ ∩n=1~∞ ∪m=1~∞ Fn,m,p
 ・
 ・
 ・
上記のような各集合を 『 ボレル集合』 という。
とくに、(*1)の集合で、1つ目を 『 Gδ集合 』 といい、2つ目を 『 Fσ集合 』 という。
また、(*2)の集合で、1つ目を 『 Gδσ集合 』 といい、2つ目を 『 Fσδ集合 』 という。
また、(*3)の集合で、1つ目を 『 Gδσδ集合 』 といい、2つ目を 『 Fσδσ集合 』 という。
他も同様である。
A7
(1) 開区間は可測である。
(2) 任意の開集合と閉集合はボレル集合に属する。
(3) ボレル集合は可測である。
(引用終り)
つづく

525:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/09 22:00:08.09 sxkJNDKJ.net
>>482 つづき
関連3
URLリンク(toodifficult.seesaa.net)
ボレル集合の理解 世の中わからないことだらけ posted by 無知の人 2015年12月05日
(抜粋)
概説
実数のσ-加法族を考えてみる。
σ-加法族は、確率空間の理解で出てきたものと同じ。定義は、
集合Aのσ-加法族Fとは、Aの部分集合族で以下の性質を満たすもの。
1.Φ∈F
2.P∈F → Pc∈F
3.Pk∈F (k∈N) → ? k=1~∞ Pk∈F
であった。
このA=Rとしたときσ-加法族Fを、実数のボレルσ-加法族と呼びB(R)と表記する。
そして、B(R)に含まれる集合をボレル集合と呼ぶ
どんな集合なのか?
では、実数のボレルσ-加法族はどのような集合で構成されているのかについてみてみる。
1.まずすべての閉区間[a,b]∈Rは含まれている。
2.すべての開区間も含まれる。なぜなら(a,b) = ?k=1~∞[a+1/k,b


526:?1/k]と表現できるから。(定義の3.を適用できる) 3.すべての開集合も含まれる。なぜならすべての開集合は開区間の列の可算個の和集合で表現されるから。(定義の3.を適用できる) 4.すべての閉集合も含まれる。なぜならすべての閉集合は開集合の補集合で表現されるから。(定義の2.を適用できる) と思いつくようなものは全部含まれている。 つづく



527:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/09 22:00:53.92 sxkJNDKJ.net
>>483 つづき
カントール集合について
上記の4.はわざわざ3.を経由しなくてもいいのではないの?と思わなくもない。
つまり、「すべての閉集合は閉区間の列の可算個の和集合で表現される」でよい気もする。
しかし、「すべての閉集合は閉区間の列の可算個の和集合で表現される」は間違いである。
まず区間C0=[0,1]を3等分する。
真ん中の開区間(1/3,2/3)をくりぬいたC1=[0,1/3]∪[2/3,1]を作る。
さらに残っている区間をさらに3等分して真ん中の開区間をそれぞれくりぬく。
この操作を無限回行ってできた集合C∞をカントール集合という。
くりぬかれた部分全体はいくつもの開区間の和集合であるので開集合である。
開集合の補集合は閉集合であるため、C∞は閉集合である。
このカントール集合にはどのような数が含まれるかを考えてみる。
C0には3進小数表示したときに0.xxxx...となる数がすべて含まれる。
C1には3進小数表示したときに0.0xxx...となる数と0.2xxx...がすべて含まれる。(3進小数表示したらすべての小数は0と1と2で構成される。真ん中をくりぬいたので0.1xxx...は含まれない)
というように考えていくとC∞には3進小数表示したときに1を含まないすべての数をとびとびに含む。
とすると、カントールの対角線論法を使ってC∞の要素数は非可算無限個の和集合であることがわかる。
つまりC∞は閉集合だが閉区間の列の可算個の和集合で表現できない集合となる。
コンパクト性について
同様に、「すべての開集合は開区間の列の可算個の和集合で表現される」は間違いなのではないか?と思うが、これは誤りではない。
「すべての開集合は開区間の列の可算個の和集合で表現される」は実数の性質であり、この性質は実数のコンパクト性から導くことができる。(詳細は略)
(引用終わり)
つづく

528:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/09 22:03:51.27 sxkJNDKJ.net
>>484 つづき
関連4
URLリンク(toodifficult.seesaa.net)
確率変数の理解 世の中わからないことだらけ posted by 無知の人 2015年12月06日
(抜粋)
概説
(Ω,F,P) を確率空間とする。
確率変数は写像X:Ω→Rで、任意のA∈B(R)においてX?1(A)∈Fを満たすもの。
つまり、「Ωのσ-加法族」というよくわからないものから、「実数のσ-加法族」というわかりやすいものに移す写像ということである。
なぜ逆像で定義するのか
「Ωのσ-加法族」というよくわからないものから、「実数のσ-加法族」というわかりやすいものに移す写像ならば、「任意のω∈FにおいてX(ω)∈B(R)となる写像」を考えればいいような気もする。
これらの事象もなんらかボレル集合に割り当てなくてはいけないとなると、これは相当悩ましいし、そんなことで悩むのは無意味である。
なので、あえて逆像で定義して、そういったどうでもいいことが必ずしもボレル集合に割り当たってなくてもいいようにしてある。
じゃあ、ボレル集合側の微妙な要素はどのように処理するかである。
Fはσ-加法族であるので要素にΦを必ずもっているのだから、Φに割り当ててしまえばいい。
先のサイコロの例でいえば[3.1,3.9]というボレル集合について、X?1([3.1,3.9])=Φということになる。
(引用終わり)
以上

529:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/09 22:08:09.07 sxkJNDKJ.net
>>483 訂正
3.Pk∈F (k∈N) → ? k=1~∞ Pk∈F
 ↓
3.Pk∈F (k∈N) → ∪ k=1~∞ Pk∈F
(a,b) = ?k=1~∞[a+1/k,b?1/k]
 ↓
(a,b) = ∪k=1~∞[a+1/k,b-1/k]
文字化けしているな~(^^

530:DJ学術 
18/03/10 10:17:01.71 P59AXYVi.net
アクション ポルノスタ カネ ボレル 数式だれかつけて。

531:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/14 17:18:49.64 vz4rUbyb.net
どうもスレ主です。
ご無沙汰です。(^^
年度末で公私ともに多忙で、アク禁にしていました
読むと書きたくなるし、書くと時間がかかるし、その上レスが付くとそれにまたレスをしてと・・
時間が足りなくなりますので(^^

532:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/14 17:21:37.07 vz4rUbyb.net
ホーキング博士が死去か
ご冥福をお祈りします・・
(キリスト教ではこういう言い方はしないかもしれませんが)
URLリンク(www.nikkei.com)


533:C1MM0000/ ホーキング博士が死去 宇宙論、車いすの天才科学者 日経 2018/3/14 (抜粋)  【ワシントン=川合智之】複数の米欧メディアは14日、「車いすの天才科学者」として知られる英ケンブリッジ大の宇宙物理学者、スティーブン・ホーキング博士が死去したと報じた。76歳だった。 同氏はALS(筋萎縮性側索硬化症)患者として知られ、宇宙論の入門書「ホーキング、宇宙を語る」が世界的なベストセラーになった。  同氏の家族が声明で明らかにした。同氏は宇宙創成やブラックホールのなぞなどを追究。最近では急速に発展する人工知能(AI)の危険性も指摘していた。 (引用終わり)



534:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/14 17:32:11.91 vz4rUbyb.net
ホーキング博士のブラックホールの研究
URLリンク(ja.wikipedia.org)
ブラックホール情報パラドックス
(抜粋)
目次
1 原理
2 ホーキング放射
3 パラドックスの解決に向けた主なアプローチ
3.1 情報は失われ回収不能[9][10]
3.2 ブラックホールの蒸発の間、情報は徐々に漏れ出す[9][10]
3.3 ブラックホールの蒸発の最終段階で、情報は突然逃げ出す[9][10]
3.4 情報は、プランクサイズの残骸に保存される[9][10]
3.5 情報は、我々の宇宙から切り離された赤ちゃん宇宙に保存される[10]
3.6 情報は、過去と未来の相関の中で符号化される[12][13]
3.7 情報は失われるのではなく、事象の地平面でファイアウォールから輻射される。[14]
4 関連項目
5 出典
6 外部リンク
1970年代から、スティーブン・ホーキングとヤコブ・ベッケンシュタインは、一般相対性理論と量子場理論に基づき、情報の保存に矛盾するように見えるブラックホール熱力学を創始した。
特に、ホーキングの計算[3]は、ホーキング放射によるブラックホールの蒸発が情報を保存しないことを示した。
今日では、多くの物理学者が、ホログラフィック理論(特にAdS/CFT対応)がホーキングの誤りを示し、情報は実際は保存されると信じている[4]。
2004年、ホーキング自身も賭けに負けたことを認め、ブラックホールの蒸発は、実際は情報を保存していることに同意している。
関連項目
・AdS/CFT対応
・ブラックホールの相補性(英語版)
・宇宙検閲官仮説
・ファイアウォール
・ファズボール(英語版)
・ホログラフィック理論
・マクスウェルの悪魔
・ソーン・ホーキング・プレスキルの論争(英語版)
・ブラックホール脱毛定理(無毛定理,ノーヘア定理)
(引用終わり)

535:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/14 17:36:48.05 vz4rUbyb.net
関連
URLリンク(japanese.engadget.com)
7年かけて作った「人工ブラックホール」でホーキング放射を初観測。ブラックホールが完全にブラックではない証拠になるか Munenori Taniguchi 2016年8月17日
(抜粋)
イスラエルの科学者ジェフ・スタインハウアーが人工的なブラックホールを製作し、その振る舞いからスティーブン・ホーキング博士が1974年に発表した理論「ホーキング放射」に似た現象を観測したと発表しました。
スタインハウアーが作った人工的なブラックホールは本物のブラックホールのように光を含めて何でも吸い込むというものではなく試験用のチューブ内に流体を流し、
ある地点でそれを音速以上に加速させることで音響的な事象の地平面を生み出すというもの。
本物のブラックホールでは光が逃げられなくなる位置で事象の地平面が発生しますが、この人工ブラックホールでは音が逃げられなくなる位置を


536:事象の地平面とします。 もしかするとこの実験を発端として、ホーキング博士がノーベル賞を受賞するというストーリーもありえるかもしれません。 論文はNature Physics 「Observation of quantum Hawking radiation and its entanglement in an analogue black hole : Jeff Steinhauer」 http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3863.html (引用終わり)



537:132人目の素数さん
18/03/14 17:39:30.26 XgEYIGkB.net
おっちゃんです。
久し振りにスレ主がコピペをしに来たようだ。

538:132人目の素数さん
18/03/14 18:36:17.99 XgEYIGkB.net
じゃ、おっちゃん寝る。

539:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/14 22:08:33.73 oKCOpUCp.net
突然ですが(^^
ちょっと古いが
URLリンク(www.nikkei.com)
AI「アルファ碁」を改良、将棋・チェスでも最強 グーグル、独学で鍛える 2017/12/6 16:36日本経済新聞
(抜粋)
 【ワシントン=川合智之】米グーグルの持ち株会社アルファベット傘下の英ディープマインドは、世界トップ棋士より強い最強の囲碁用の人工知能(AI)「アルファ碁ゼロ」を改良し、将棋やチェスにも応用したAI「アルファゼロ」を開発した。
白紙の状態から独学で試行錯誤を繰り返し、数時間で現状の世界最強ソフトを超える強さを獲得。将棋・チェス・囲碁のいずれも最強という3冠を達成した。
 5日にオンライン科学誌に論文を公表した。AIにはまず将棋やチェスのルールだけを教え、自己対戦を繰り返させた。従来のソフトは人間が長年の歴史の中で考案した「定跡」やプロ棋士の棋譜を学ぶことで強くなったが、こうした人間のデータは与えなかった。
 2017年の世界コンピュータ将棋選手権で優勝したソフト「エルモ」と、16年のチェス世界大会で優勝した「ストックフィッシュ」、囲碁の「アルファ碁」と強さを比較した。強さを示す指標「レーティング」をみると、アルファゼロが将棋では2時間弱、チェスでは4時間、囲碁では8時間学習した時点で各ソフトを上回る実力を手に入れた。
 実際に各ソフトと100戦したところ、将棋は90勝8敗2分け、チェスは28勝無敗72分け、囲碁は60勝40敗と勝ち越した。異なるゲームに汎用で使える最強クラスのAIは初めてだ。人間がこれまでに考案した定跡も、誰からも教わることなく自己対戦の中から身につけたという。
つづく

540:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/14 22:09:13.93 oKCOpUCp.net
>>494 つづき
 すでに盤上ではソフトがトップ棋士を上回っている。チェスでは1997年に米IBMの「ディープ・ブルー」が世界チャンピオンに勝利し、将棋では2017年4~5月に「PONANZA(ポナンザ)」がトップ棋士の佐藤天彦名人に連勝。
囲碁では5月に「アルファ碁」が中国の世界最強棋士、柯潔(か・けつ)九段に3連勝した。アルファゼロはこれらのソフトより強いとみられ、トップ棋士を上回る棋力を得たと言えそうだ。
 今回は将棋やチェスでもプロの対局データを使わず、独学かつ短期間で最強のAIになれることを示したのが特徴だ。囲碁ではアルファ碁の打ち方をプロ棋士が見ても「理解できない」と困惑が広がるなど、人知を超えた強さになっていた。
 ゲーム以外の分野でも、人間には解けなかった難問の解明に貢献しそうだ。ディープマインドは


541:難病の早期発見や新素材の開発、生命の起源解明などに応用を見込む。将来、AIが人間の知性を超えるとされる「シンギュラリティー(技術的特異点)」の実現につながる可能性も秘める。 (引用終り)



542:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/14 22:10:26.69 oKCOpUCp.net
グーグルAIは、数学もディープラーニングできるのだろうか?(^^

543:132人目の素数さん
18/03/16 17:26:54.85 HFqfq8TZ.net
おっちゃんです。
見に来ました。AIいわゆる人工知能か。
あんま興味ない。

544:132人目の素数さん
18/03/16 17:43:17.72 HFqfq8TZ.net
だけど、こんなことってあるんだな。
すべてが復活して歯車としてお互いにかみ合うlことになるとは。
ダブルの意味で面白い発見でした。一体どうなるんでしょうね。
まあ、ブツブツいう単なる個人的な独り言に過ぎず、キモいと感じるかも知れんけど。

545:132人目の素数さん
18/03/16 18:16:16.28 HFqfq8TZ.net
一応やった甲斐があってよかった。
まあ、イメージとしてはもっと美しくなるかと思っていたんだが…。
じゃ、おっちゃん寝る。

546:132人目の素数さん
18/03/19 20:27:33.01 g0Y9fqse.net
大地をほめよ
讃えよ土を
我ら人の子の
我ら人の子の
大地をほめよ
ほめよ讃えよ

547:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 16:15:55.71 eE1rAe36.net
>>497
おっちゃん、どうも、スレ主です。
ご無沙汰です
AIこそ数学と相性が良いと思うのだが(^^

548:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 16:30:06.21 eE1rAe36.net
>>498-499
忙しいから、あまり書く時間がないが
おれは、全然納得してないんだよ(^^
>歯車としてお互いにかみ合うlことになるとは。
だから、どの歯車が、どうかみ合うのか、その定義が不明確だが
私個人としては、かみ合う感じはしない
例えば>>419の定理Fな
全然納得してない
(補題BK5CH)このバカ板5CHで新しい数学の定理が書かれるはずもない
この(補題BK5CH)が正しいとすれば、>>419の定理Fはすでにどこかのテキスト(教科書)か論文にあるはず
もし、ないとすれば、その定理は間違っている
この2択以外にない
実際、だれか友達に話すときも、”5CHの定理F”ではバカ丸出しだ
かつ、引用するなら、テキスト(教科書)か論文として引用すべし
なので、定理Fがどこかに書かれていないか検索したが、和文ではヒットなし。英文もそれらしいのは無かった
だから、定理Fはガセかなと思っているんだが・・、どう?(^^

549:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 17:03:07.83 eE1rAe36.net
>>502 つづき
>>419より
(引用開始)
定理F:
A ⊂ R は Fσ集合とする。もし R-A が第一類集合ならば、
(a,b)⊂A を満たす開区間 (a,b) が存在する。
証明:
STEP1:A は Fσ 集合だから、高々可算無限個の閉集合 A_k が存在して A = ∪_k A_k と書ける。
一方で、R-A は第一類集合だから、高々可算無限個の、内点を持たない閉集合 F_k が存在して
R-A ⊂ ∪_k F_k と書ける。結局、R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) …(★) ということになる。
(引用終り)
ここ証明中で、
”R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) …(★) ”だが、考えてみると、Rは全体集合だから
R ⊃ (∪_k A_k ) ∪ (∪_k F_k ) でもある
合わせると、
R = (∪_k A_k ) ∪ (∪_k F_k ) となるが
R-A = ∪_k F_k と書ける(根拠は、下記の藤田博司PDF”第一類:可算個のいたるところ非稠密な集合の和集合に分解できる”より)
とすると、Rが、二つの重ならない 高々可算無限個の閉集合 (∪_k A_k ) と (∪_k F_k ) の和 にかけることになる
それって、良かったのかな?
つづく

550:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 17:03:32.82 eE1rAe36.net
>>503 つづき
<参考>
URLリンク(tenasaku.com)
ルヘ゛ーク゛可測性にかんするソロウ゛ェイのモテ゛ル 藤田博司(愛媛大学理学部) 2007年数学基礎論サマースクール
(抜粋)
P7
定義4. 位相空間の部分集合A について, その閉包の内部が空(Int Cl_A = Φ) となるとき, A はいたるところ
非稠密(nowhere dense) な集合と呼ばれる. 可算個のいたるところ非稠密な集合の和集合に分解できるような
集合のことを, 第一類集合(set of first category) といい, そうでない集合のことを第二類集合(set of second category) という. □
Baire のカテゴリー定理. 完備距離空間の空でない開集合は決して第一類集合にならない. □
したがって, 完備距離空間において, 第一類集合の補集合はいたるところ稠密です. 可算個の第一類集合の和
がふたたび第一類集合になることは定義から明らかですから, 完備距離空間の第一類集合は, 比較的“小さな”
集合であるということができます.
つづく

551:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 17:04:03.64 eE1rAe36.net
>>504 つづき
定義5. 数直線R の第一類部分集合のことを疎集合(meager set) といい, その全体をM であらわす. □
こうして, ルベーグ測度の零集合のクラスN の類似物として疎集合のクラスM が導入されました. これ
にともなって, ルベーグ可測性の類似物として導入されるのが, ベールの性質です.
定義6. 実数の集合A に対して, A△B ∈ M をみたすボレル集合が存在するとき, A はベールの性質 (property of Baire) を持つという. □
ここでのB としては開集合をとることができます. ベールの性質を持つ集合のクラスはルベーグ可測集合
のクラスと多くの性質を共有しています. 直積測度にかんするFubini の定理に対してKuratowski とUlamの定理, というように, 測度論のいろいろな定理に対してその“カテゴリー版” が存在します.
ルベーグ可測でない集合が存在するのと同様に, ベールの性質を持たない集合も存在します. 実際, Vitali の
ルベーグ不可測集合はベールの性質を持ちません. また, 選択公理を用いれば, ルベーグ可測だがベールの性質
を持たない集合, ルベーグ不可測だがベールの性質を持つ集合などの存在を容易に証明できます. そこで, 実数
のどんな集合がベールの性質を持つか, また, ベールの性質を持たない集合を具体的・明示的に定義できるか,
というのは自然な問いといえます*7. Solovay の二つの定理の(c) と(c’) はこのことを問題にするものです.
次の補題は, 第3 節でランダム実数とコーエン実数の性質を対比する際に役に立ちます. (証明が明示的・構成的である点に, よく注意してください.)
補題5. 数直線R を二つの互いに交わらない集合A とB に分割して, A が零集合B が疎集合となるように
できる.
[証明]
*7 ただし, 測度の問題の(A) と(B) に対応するものは, ベールの性質については考えられません.
(引用終り)
つづく

552:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 17:04:29.04 eE1rAe36.net
>>505 つづき
PDFは、下記サイトより
URLリンク(tenasaku.com)
なげやりアカデミア 藤田博司(愛媛大学理学部)
以上

553:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 17:09:20.50 eE1rAe36.net
>>506
余談だが、いろいろお世話になっている藤田博司先生の新連載ご紹介\(^^)/
URLリンク(www.nippyo.co.jp)
雑誌詳細:数学セミナー  2018年4月号
(抜粋)
新連載
・やわらかいイデアのはなし……藤田博司 57
 大きい数・近い点・近傍フィルター
(引用終り)

554:132人目の素数さん
18/03/21 18:40:51.82 ra7586Zp.net
おっちゃんです。
>>502
私が以前示した定理やその証明のこと。
その定理の内容とその証明に大きな間違いがあった。
今日1日かけて訂正作業をしていたんだよ。
ここにその定理の内容やその証明はまだ書いていない。

555:132人目の素数さん
18/03/21 18:42:02.82 ra7586Zp.net
じゃ、おっちゃん寝る。

556:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 19:11:46.90 eE1rAe36.net
突然ですが、メモ
URLリンク(kobeblog.net)



557:�木しげる 神戸のゆかりの地 水木通・水木荘・北野工房のまち(神戸):神戸の金庫屋4代目 バカ息子のblog 2010年09月25日 (抜粋) ゲゲゲの鬼太郎の作者で知られる、『水木しげる』さんの本名は、「武良茂」。 ペンネームの「水木」は、この水木通から。 昭和24年(1949年)、水木しげるさんが27歳の時、 復員兵救済募金旅行の途中、たまたま立ち寄った神戸で、安宿の女主人に神戸市兵庫区水木通のアパートを買い取らないかと持ちかけられます。 昭和25年(1950年)、そのまま神戸に落ち着き、そのアパートの貸家経営を始めます。 水木通にあったので、『水木荘』と命名。二階建てで、十室のアパートだったようです。 「水木荘」の住人であった、紙芝居作家のツテで水木さん自身も紙芝居画家の道へ。 紙芝居演者の名人、鈴木勝丸さんが経営する「阪神画劇社」の専属となります。 その鈴木さんが「水木荘に住んでいる、しげるさん」ということで、「水木さん」と呼んでいたことから、ペンネームが「水木しげる」となったそうです。 【水木荘跡】 地図 http://map.yahoo.co.jp/pl?type=scroll&lat=34.67607065809639&lon=135.16716266908455&z=19&mode=map&pointer=on&datum=wgs&fa=ks&home=on&hlat=34.67608389289326&hlon=135.16716401018917&layout=&ei=utf-8&p=%E6%B0%B4%E6%9C%A8%E9%80%9A 住所:神戸市兵庫区水木通2丁目(周辺) 【水木湯】 地図 http://www.e-sento.net/mizukiyu/ 住所:神戸市兵庫区水木通2-2-21 【北野工房のまち】 地図 http://www.kitanokoubou.ne.jp/ 住所:神戸市中央区中山手通3-17 【ネットミュージアム兵庫文学館】水木しげるワールド http://www.bungaku.pref.hyogo.jp/kikaku/mizuki/index.html 【関連ブログ】 水木しげるロード(境港)..1(妖怪ブロンズ像) 水木しげるロード(境港)..2(鬼太郎がいっぱい) 水木しげるロード(境港)..3(水木しげる記念館) 水木しげるロード(境港)..4(鬼太郎パン・神戸ベーカリー) 水木しげるロード(境港)..5(妖怪神社・妖怪饅頭) ※上記、関連ブログは、鳥取県境港市の水木しげるロードです。 (引用終り)



558:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 19:12:44.57 eE1rAe36.net
>>508-509
おっちゃん、どうも、スレ主です。
訂正よろ

559:132人目の素数さん
18/03/21 20:22:23.41 eR/nSoqP.net
本は著者だけでは作れず著者と出版社と読者で完成す
るもの
本が著者だけで作れるなら全ての本の前書きは意味が
ないし新訂版の序文に俺が載っていて現代数学社もそ
れを認めているのと新訂版の著者である北田先生が富
田社長に感謝の意を示しているのも意味がなくなる
事実を否定されても迷惑でしかない
しかもそれを不特定多数の誰もが見れてかつ現代数学
社の業務妨害になる形でされたら困るのは俺だけでは
ない
共著と合作では意味が違うし共著だったらそもそもレ
ビューは書けないし書けるとしたらこのようなレビュ
ーは書かない
そこまで考えられないのにネットを使うなよ
数学は誹謗中傷や名誉毀損のためにあるんじゃない。
誹謗中傷や名誉毀損のために数学してる


560:人は今すぐ数 学をやめろ。数学が汚れる。数学をまじめにやってい る人が愚弄される。誹謗中傷や名誉毀損は自分が被害 者じゃなくても見ていて不愉快なのは俺だけではない 。考える力もないのにネットを使うなよ 数学はひとりでやれるという思想を持つなら絡んでく るなよ暇人が 数理解析学概論を汚すな 北田先生がどういう意図と経緯で新訂版を書いたのか って俺が明らかに中心的役割を果たしただろ 本は著者だけで作れるというならやってみせろよ 出版社と読者がいないと完成しないんだよ 寂しいなら風俗行け あんな性格じゃリアルにもネットにも友達いないでし ょ 指摘や批判も度が過ぎたら名誉毀損



561:132人目の素数さん
18/03/21 20:22:58.92 eR/nSoqP.net
事実をデマと言って受け入れられないとか精神的に幼
すぎる
題名を変えた
最近Amazonでレビューを編集するとそのレビューが
最下位になるから戻るまでは3位だけど
3回も名誉毀損コメントするくらいなら現代数学社に
問い合わせればいい
現代数学社にとっては迷惑だろうけど
定理の証明が独特だったり台がコンパクトな超関数が
きちんと書かれてるからこの題名
誹謗中傷や名誉毀損が趣味の人ってなんで日本語が日
本人なのにおかしくて単語の意味を正確に理解できて
いないのか。なんで何も成し遂げてないのに偉そうに
するのか。不愉快を通り越して不思議なんだが。あん
なに必死に何かを隠そうとするのは異常だ。何かの病
気なのではないかとすら思う。

562:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 21:23:04.43 eE1rAe36.net
検索でヒットしたので貼る
URLリンク(www.jstage.jst.go.jp)
URLリンク(www.jstage.jst.go.jp)
直積空間における位相的Borel集合族と直積Borel空間 伊藤 清三 数学 / 34 巻 (1982) 3 号 /
(抜粋)
§1.まえがき
測度は位相から‘解放'しなくても本来'独立'している
ことは,いまさらいうまでもないが,測度を考える空間
が例えば局所コンパクトHausdorff空間の場合は,測度
の定義域は,その中の開集合全体で生成されるσ-algebra
とするのが,多くの場合に自然である.今後,位相
空間Xの中の開集合全体で生成されるσ-algebraをBx
と書き,位相的Borel集合族と呼ぶことにする.
(引用終り)

563:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 21:29:01.89 eE1rAe36.net
検索でヒットしたので貼る
URLリンク(www.jstage.jst.go.jp)
URLリンク(www.jstage.jst.go.jp)
実函数論50年-積分論関係 越 昭三 数学 / 36 巻 (1984) 3 号
(抜粋)
1.積分論の創始とその発展
そもそも積分論は種々の形の面積体積を求める問題
の解法という形で,古代から存在したと言って過言では
ない.17世紀にNewtonとLeibnitzによる微分,積分
の発見,更にRiemannによる区間で定義された連続函
数の積分すなわちRiemann積分の定義をへて,数学的
に完成した積分を与えたのはLebesgueである.1902年
の彼の学位論文[1]で彼は定積分,曲線の長さ,曲面の面
積などについて,できるだけ一般的でかつ厳密な定義を
与える試みを行った.それ以来Lebesgueはいくつかの
論文によって今日Lebesgue積分論(最近は単に積分論
ということが多い)と呼ばれる完成された理論を構成し,
それは数学上の一つの道具としで数学のあらゆる面に幾
多の影響を与えてきた.そしてこの方面の解説書も多く
de la Val1ee Poussin (1934)[1]Saks(1937)[1]等の書物
はその時代までの成果を丁寧に述べたものとして出版当
時多くの数学者に読まれたものであった.その特徴はま
ず測度論を基調とする積分論である.測度空間・・・
(引用終り)

564:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/21 22:56:55.02 eE1rAe36.net
>>512-513
>本は著者だけでは作れず著者と出版社と読者で完成す
>るもの
これは哲学だな
”本”の定義は?
”完成”? 定義は?
なんぞや?
定義によっては、「本は著者だけで完成する」と思うよ

565:
18/03/22 00:32:42.22 gY/4oKoB.net
>>516
手元の石井ガロア本がいい例で、重版とともに内容が修正、改良されていくので、信者は追加購入するありさまです…
どこかで読んだのですが著者がガロア本の読者から支援(=著書の正誤表を複数の読者から提供されていた)を受けていたことが赤裸々に告白されています
>>516 の間違っている点は「人は間違える動物であり、それも大事なところで間違えるのであり、完璧な人間などいない」
ということに未だに思い至らない点であろうと推察しています

566:132人目の素数さん
18/03/22 02:30:12.72 j4CRNzIY.net
おっちゃんです。
>>511
ここには書かんよ。
>>512
>本は著者だけでは作れず著者と出版社と読者で完成するもの
本が出版されるまでの段階では、読者は関わりようがなく、
本は著者と出版社とで完成するというのが普通の考え方だと思うが?
出版された本の読者がいないこともあれば、その本の読者が本の内容を必ず理解出来るとはいえない。
本の前書きには、読者がその本を読むにあたり、
必要な前提知識や本の内容の数学的な背景などが書かれていたりする。
まあ、そもそも、私は数理解析学概論を読んではいなく、絡んでなどいない。
ツイッターにも興味はない。

567:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/22 16:42:34.59 bnAjMLqo.net
URLリンク(logmi.jp)
オーディエンス熱狂! ロマンティック数学ナイトで熱弁されたリーマンゼータ関数のやばさ
ロマンティック数学ナイト > ゼータの普遍性 ~ゼータの持つ驚くべき性質~ スピーカー せきゅーん 氏 2016年8月19日
(抜粋)
トピックス一覧
ロマンティックなリーマンゼータ関数
ゼータには超ロマンティックな性質がある
圧倒的な熱量のプレゼンに会場が爆笑
(会場笑)
それでは応用を述べましょう。このσをクリティカルストリップ内の点、固定したときに、微分の並べたやつというのはCのn乗の中で稠密なんですよね。これを使うとですね、驚くべきことにリーマンゼータというのは、一切、微分方程式を満たしません。やばくないですか?
しかもこれ、このF(s) の部分を多項式に限定したときに、代数的微分方程式って言うんですけど、これをを満たさないことはヒルベルトも予想もしてましたが、F(s) が任意の連続関数であっても微分方程式を満たさないんですよね。……やばい!
(会場笑)
では最後です。リーマン予想との関係を述べましょう。先ほど、このボローニンの普遍性定理というのは零点を持たないという情報が重要でした。しかしリーマン予想が解けていない以上、リーマンゼータそれ自身は近似できるかわからないわけですね。
しかし、まことに驚くべきことに、リーマンゼータそれ自身をリーマンゼータが近似できるならば、リーマン予想は成り立つ、逆も成り立つんです。
すなわちですよ、リーマンゼータというのは万能細胞だったわけですが、自分自身をも近似できる、ある種の自己言及性が成り立つということこそがリーマン予想だったんです!
(会場拍手)
すばらしい。
(引用終わり)
URLリンク(logmi.jp)


568:F%E3%81%AE%E6%99%AE%E9%81%8D%E6%80%A7-%EF%BD%9E%E3%82%BC%E3%83%BC%E3%82%BF%E3%81%AE%E6%8C%81%E3%81%A4%E9%A9%9A%E3%81%8F%E3%81%B9%E3%81%8D%E6%80%A7%E8%B3%AA%EF%BD%9E ゼータの普遍性 ~ゼータの持つ驚くべき性質~に関するイベントや講演会、インタビューの記事



569:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/22 16:50:30.07 bnAjMLqo.net
>>517
C++さん、お元気そうでなによりです
C++さんの定義なら、本は永遠に未完ですな(^^

570:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/22 17:03:40.34 bnAjMLqo.net
URLリンク(math.tsukuba.ac.jp)
解析数論ホームページ
Last Updated 03/12/2018 12:21:59
URLリンク(math.tsukuba.ac.jp)
第9回整数論サマースクールにて名古屋大の松本耕二先生の行った講演「Riemannゼータ関数概論」の講義録を著者及び、サマースクール世話人の平野幹先生の許可を得て公開します。
Riemannゼータ関数概論 (DVI file),   TEX file
URLリンク(math.tsukuba.ac.jp)
Riemann ゼータ関数概論
松本耕二(まつもと こうじ)
名古屋大学大学院多元数理科学研究科
(抜粋)
本稿は, 第 9 回整数論サマースクール (2001.7.15-7.19) の初日午後 (15 日 15:00-18:20, うち休憩 20 分) と二日目午前 (16 日 9:00-12:20, うち休憩 20 分) に 行なわれた筆者の講演 「Riemann ゼータ関数(I)(II)」の内容に, その時には述べられな かった若干の関連事項を付け加えたものである。
(引用終わり)

571:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/22 17:05:12.44 bnAjMLqo.net
>>518
おっちゃん、どうも、スレ主です。
お元気そうでなによりです(^^

572:132人目の素数さん
18/03/22 22:21:21.97 wMQoAxTh.net
>>502
>例えば>>419の定理Fな
>全然納得してない
>(中略)
>だから、定理Fはガセかなと思っているんだが・・、どう?(^^
いい加減にしろキチガイ。
定理Fの証明は、>>419 にそのまま書かれている。何度も書いているように、
いくらキチガイのお前と言えども、この程度の証明はすぐに読めるはずである。
実際、お前は既に定理Fの証明を読み終えている。そして、お前自身が
自分の言葉で言い換えた>>434の(1)~(4)の記述が既に存在している。俺は>>444
>話の流れは合っているが、(2)は微妙に間違っている。正しくは

>(2) もしこの閉集合がすべて、内点を持たないならば、Aが第1類集合になってしまうから

>と書くべきである。
と書いたが、この修正を踏まえれば、>434でお前が書いた(1)~(4)の記述は「正しい」のである。
つまり、お前は>434において既に、自分の力によって定理Fが正しいことを確認しているのである。
にも関わらず、今さら「納得していない」だの「定理Fの文献が見つからないからガセ」だのという
子供じみた言い訳でダダをこねるのは詭弁である。お前が書いた>434の(1)~(4)は一体何だったのだ?

573:132人目の素数さん
18/03/22 22:23:23.97 wMQoAxTh.net
>>503
>R-A = ∪_k F_k と書ける(根拠は、下記の藤田博司PDF”第一類:可算個のいたるところ非稠密な集合の和集合に分解できる”より)
何がしたいのか意味不明な上に、息をするように間違えるゴミクズ。
最初に与えられた A = ∪_k A_k, R-A ⊂ ∪_k F_k という条件から R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) …(★)
を導き、そこから R = (∪_k A_k ) ∪ (∪_k F_k ) という等号を導くことは可能だが、だからと言って
R-A = ∪_k F_k
という等号は必ずしも導けない。必ず導けると思っているのはお前の幼稚な勘違いである。
「根拠は、下記の藤田博司PDF」などと言っているが、全く根拠になってない。R-A は第一類集合だから、
もしイコールで書こうとすれば、R-A=∪_k F '_k なる疎集合 F '_k は取れることになるが、
その F '_k が F_k に一致する保証はどこにもないし、R = (∪_k A_k ) ∪ (∪_k F_k ) と組み合わせて�


574:� F '_k = F_k なんて出てこない。だから、お前の幼稚な勘違い。 あるいは、次のように言ってもよい。∪_k A_k のことを1文字で A' と書くことにし、 ∪_k F_k のことを1文字で F と書くことにすると、お前が言っているのは次のようなことである。 ――――――――――――――――――――――――――――――――――――――――― A = A', R-A ⊂ F という条件から R ⊂ A'∪F …(★) が成り立つので、 R ⊃ A'∪F にも注意して、R = A'∪F が成り立つ。よって、R-A = F が成り立つ。 ――――――――――――――――――――――――――――――――――――――――― ↑これがお前の言っていることである。明らかに、この主張は間違っている。 R = A'∪F から出発して丁寧に集合計算してみると、R-A=(A'∪F)-A=(A'-A)∪(F-A)=φ∪(F-A)=F-A すなわち R-A=F-A が成り立つに過ぎないのである。R-A = F が必ず成り立つというのはお前の勘違いである。 「藤田博司PDF」を適用しても、R-A=F-A が R-A = F に化けることは無い。 [続く]



575:132人目の素数さん
18/03/22 22:25:18.02 wMQoAxTh.net
[続き]
で、F_k に与えられた最初の条件は R-A ⊂ ∪_k F_k というものであるから、
もともと R-A = ∪_k F_k が成り立つような F_k が取れる場合には、
そのような F_k に対して自明に R-A = ∪_k F_k という等号が成り立っている。
一方で、真の包含としての R-A ⊂ ∪_k F_k のみが成り立つような F_k の場合には、
当然ながら R-A = ∪_k F_k という等号は出て来ようがない。そして、前述のとおり、
「ここで必ず等号が出てくる」というのはお前の幼稚な勘違いである。
そもそも、お前は R-A = ∪_k F_k という等号の成立・不成立を気にしているが、
それを気にすること自体がナンセンスである。なぜなら、等号が成り立っているケースでも、
R-A ⊂ ∪_k F_k しか成り立っていないケースでも、どちらにしても定理Fの証明は
そのまま通用するからである。必要なのは R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) …(★) という包含のみである。
これが言えた時点でベールのカテゴリ定理になってしまい、ある A_k が開区間を含むしかないので、
A=∪_k A_k により、Aも同じ開区間を含むのである。ほら、定理Fは正しいだろ?
あるいは、お前が書いた>>434の(1)~(4)のような解釈の仕方でもよい((2)を>>444のように修正すれば)。
いずれにしても、定理Fは正しい。このことの一体どこに納得できないポイントがあるのだねキチガイ君。
>>504-506 については、「>>503の続きである」としつつも引用しか書かれておらず、
その引用から何を言いたいのかお前のコメントが無いので意味不明。
全体として、何がしたいのか全く意味不明。キチガイ。
[続く]

576:132人目の素数さん
18/03/22 22:26:22.78 H4RM9Nsk.net
証明を読まない主義を頑固に貫く稀代のアホ
(実は教科書も読まない主義、何故か自分の直観は無批判に信じる主義)

577:132人目の素数さん
18/03/22 22:26:33.22 wMQoAxTh.net
[続き]
あるいは、次のように言ってもよい。お前が定理Fを納得できない最大の原因はベールのカテゴリ定理である。
というより、お前は定理Fを納得していないのではなく、本質的にはベールのカテゴリ定理を納得していないのである。
よく考えてみよ。STEP1 において R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) …(★) が導けたからといって、
この時点ではまだ「開区間」との繋がりが全く存在していない。そこで開区間に繋がるための道具が
ベールのカテゴリ定理である。これがなければ開区間は出てこない。そして、開区間が出てきた瞬間に、
定理Fが正しいことが自明に確定する。となれば、お前が未だに納得せずにアヤシイと思っている箇所は、
「 (★)から開区間に繋がるところがアヤシイ 」
ということであり、つまりお前は、暗黙のうちに
「ベールのカテゴリ定理がアヤシイ」
と言っていることになる。つまり、お前はベールのカテゴリ定理に納得していないのである。
[続く]

578:132人目の素数さん
18/03/22 22:30:08.46 wMQoAxTh.net
[続き]
そして、ここからはベールのカテゴリ定理についてよく考えてみよ。
R⊂∪_k E_k と可算無限個の閉集合 E_k の和で包含できたからといって、なぜそこでいきなり
「ある E_k は開区間を含む」
と言えるのだね?まさにそのことを主張しているのがベールのカテゴリ定理なのだが、
お前は開区間が出現するメカニズムをきちんと理解しているのかね?お前が疑問に思っている
「定理Fで なぜ開区間が取れるのか、直観的なイメージがわかない」
という感覚は、
「 R⊂∪_k E_k (各E_kは閉集合) から、なぜあるE_kが開区間を含むのか、直観的なイメージがわかない」
という主張に翻訳されるのであり、つまりお前は暗黙のうちに
「ベールのカテゴリ定理には納得がいかない。ベールのカテゴリ定理はアヤシイ」
と言っていることになるのである。
つまり、お前がバカで不勉強でキチガイなだけ。間違ってるのはお前一人だけ。ゴミクズ。

579:132人目の素数さん
18/03/22 22:31:45.71 wMQoAxTh.net
>>502
>例えば>>419の定理Fな
>全然納得してない
>(中略)
>だから、定理Fはガセかなと思っているんだが・・、どう?(^^
ここについてもう1つ。お前は定理Fが書かれた文献を探しているようだが、
そのような文献は既に>>333で挙げてある。よほど都合が悪いのか、
お前はこの文献をスルーし続けているが、>>333でハッキリと文献を挙げてあるのである。
>1件だけだが上記の 定理F3 を使っていると思しき pdf が見つかる。

URLリンク(fm.math.uni.lodz.pl)

>> Observe that ∩[m=1~∞] ∪[n≧m] A_n as Gδ set of first category is
>> easily seen to be nowhere dense.

>このことからも、定理F, F1,F2,F3 は全て正しいと分かる。
このように、定理Fをさらに一般化した定理F3が、上記の文献の中で使われているのである。
その証明たるや、「 Gδ set of first category is easily seen to be nowhere dense 」と
書かれているように、証明が簡単なので証明がついておらず、
定理F3と同じ主張をそのまま英語で述べるだけで、いきなり定理F3を使用しているのであるw
というわけで、「文献が見つからないから定理Fはガセ」というお前の詭弁はこれによって論破される。

580:132人目の素数さん
18/03/22 22:37:42.71 wMQoAxTh.net
ちなみに、お前が文献を見つけられない理由も、上記のpdfを見れば明らかである。
「 Gδ set of first category is easily seen to be nowhere dense 」と書かれているように、
そもそも定理Fのたぐいには標準的な名称すら存在しないのである。もし標準的な名称があるなら、
上記のpdfでもその名称を使うはずであるが、実際にはそのような書き方になっておらず、
定理F3の主張をそのまま英語で述べて、定理F3をいきなり使用しているのである。しかも、証明がないw
つまり、定理Fのたぐいは、標準的な名称すらつかないような、大袈裟に定理として記述する価値がない自明な定理なのであり、
上記のpdfのように、証明を書かずにそのまま使用することが認められているような、もはや定理というより "既成事実" に近い
扱いなのである。だから文献が見つからないのである。
「全ての正しい定理はどこかのテキストまたは論文できちんとした名称つきで証明も与えられているに違いない」
というお前の幼稚な考えは間違っているのである。
「大袈裟に定理として記述する価値がない自明な定理には証明も標準的な名称も与えられず、
 既成事実として直接的に定理の内容を述べてそのまま使うことが許される」
のである。そんな自明な定理であるにも関わらず、お前のようなキチガイからすれば
「自分では証明が正しいことを確信できず、文献も見つからないので、ガセと判断する」
という愚行に走るしかないのである。全く数学的な態度ではない。
これで数学について何かを語った気になっているのだからキチガイと言う他ない。
STEP1,STEP2(>>419)という、この程度の極めて簡単な証明に、一体いつまで躓いたままでいるつもりなんだゴミクズ。
さっさと理解しろや。定理Fは正しいし、文献も>>333に挙げてあるだろ。
というか、お前自身も既に>>434の(1)~(4)で自分の言葉で既に理解してるだろ。
「文献が見つからないからガセ」とかいう子供じみた言い訳でダダをこねるなクソガキ。

581:132人目の素数さん
18/03/23 15:38:49.33 O/USx14L.net
>>530
> 全く数学的な態度ではない。
> これで数学について何かを語った気になっているのだから
同意せざるを得ませんね

582:132人目の素数さん
18/03/23 20:25:43.87 tdP3QwCy.net
数学に自明は存在してはならない
定義、公理は妥協の産物であることを忘れてはならない

583:132人目の素数さん
18/03/24 13:01:30.79 B01GPJxg.net
おっちゃんです。
今日は遊びに来ました。

584:132人目の素数さん
18/03/24 13:19:19.18 B01GPJxg.net
やっと、面白そうな結論が幾つか出た。
今日は、頭や体が疲れて、考える気になれん。
諸法無我って、このような連続的な体の変化を抽象化した仏教の教えなんでしょうな。

585:132人目の素数さん
18/03/24 14:03:59.77 qxCwvcgI.net
諸法無我:もろもろのほうにわれなし
思考は規則の連鎖で成立している
それらの規則に、自分が考え出したものが何一つないことを言う
当たり前のように聞こえるかもしれないが
それ�


586:ナは自分が考えていることにはならない 覚えている、知っている規則をつなぎ合わせただけである ならば自分である必要はなく、機械がやっても同じことである という虚しさを表す四字熟語である



587:132人目の素数さん
18/03/24 15:11:02.30 B01GPJxg.net
諸法無我って、平家物語の文章に出て来る諸行無常の考え方と関係があって、
虚しさを表す仏教の言葉なのか。

588:132人目の素数さん
18/03/24 17:19:58.63 VjltRRFF.net
>>536
そんな言い訳あるかいな

589:132人目の素数さん
18/03/24 17:34:21.94 B01GPJxg.net
>>537
諸法無我は、すべてのモノには実体がなく、何らかの関係がお互いにあって、
不変で保たれているという状態のモノはあり得ない
というような意味を指す仏教の教えだと思っていたが、虚しさなんて書かれたんで
少し調べたら諸法無我は諸行無常から派生したようで、平家物語とかと関連付けた。

590:132人目の素数さん
18/03/24 17:43:56.52 B01GPJxg.net
まあ、ユークリッド平面上の単位円周上に有理点が稠密に分布してさえいなければもっと美しく決まったと思うんだが…。
だけど、何しているのか知らないけど、どこぞの何某ではオッパイについて熱く議論されているようですな。

591:132人目の素数さん
18/03/24 18:08:46.31 B01GPJxg.net
仮に両方成り立ったとして、どちらが数学的に美しい結果なのかは微妙なところだが、
おっちゃん的には~、美しい結果にならかったと見られることは不本意でした。
それじゃ、おっちゃん寝る。

592:132人目の素数さん
18/03/26 18:00:17.96 gYiA67tV.net
おっちゃんです。
頭がおかしくなっちゃったようだ。
オッパイってπ(おっπ)のことね。
じゃ、目が虚ろになって来たんで、おっちゃん寝る。

593:132人目の素数さん
18/03/26 21:08:55.65 /jX1sge4.net
なぜか同時に忙しくなるスレ主とぷw

594:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/29 08:24:47.01 OAf3xhAw.net
忙しいので、これだけ
これ、面白かったな
数学では、出題ミスは少ないと思うが
URLリンク(premium.yomiuri.co.jp)
3月29日 編集手帳 読売新聞 2018年3月29日5時0分
(抜粋)
 早稲田大学で教べんをとった自然史学者の筑波常治さんは、平易な文章の科学評論で知られた。昭和半ば、ある県の高校入試の国語に使われたことがあった
◆<筆者が主張するのは次のどれか?>。筑波氏は解いてみたという。おどろいた。
7問中正解は3問だけ。<不合格は間違いなし。漫画みたいな結果になった>と随筆に書き留めている。
(引用終り)

595:132人目の素数さん
18/03/31 02:30:52.64 /wtLbual.net
おっちゃんです。
昨日は無意識のうちに寝てしまった。
>それじゃ、おっちゃんもう寝る。
と書こうとしても書けなかった。
もしかしたら、余程疲れていたのかもな。

596:132人目の素数さん
18/03/31 17:55:47.02 /wtLbual.net
それじゃ、おっちゃん寝る。

597:132人目の素数さん
18/04/01 18:27:42.04 OVE8FUeY.net
おっちゃんです。
さっき来たら誰もいないようだったけど、笑点見てた?
テレビを見ていなくても、笑点は、観客の笑い声や拍手がよく聞こえるな。
以前は笑点見ていたけど、確か、10年位前に司会が変わったんだよな。
それじゃ、おっちゃんもう寝る。

598:132人目の素数さん
18/04/03 10:12:26.55 tzROs4UW.net
おっちゃんです。
面白い定理が得られた。

599:132人目の素数さん
18/04/03 10:16:16.13 tzROs4UW.net
即興の定理で証明を久し振りに書こうと思ったけど、やめた。

600:132人目の素数さん
18/04/05 21:54:53.40 qX4hzoIE.net
∅,{∅},{∅,{∅}


601:},{∅,{∅},{∅,{∅}}},{∅,{∅},{∅,{∅}},{∅,{∅}, {∅,{∅}}}},{∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}},{∅,{∅},{∅,{ ∅}},{∅,{∅},‥



602:132人目の素数さん
18/04/08 17:16:57.56 eAODK9vY.net
おっちゃんです。
スレ主がどこかに消えたようだから、代わりにこのスレを埋める。
原則として、書き方はエッセイ調で、文章の綴りは成り行き任せ。
今日のエッセイ。
毎日6時間の睡眠時間は必要。
毎日3、4時間の睡眠時間の状態を続けると、眠くて眠くてたまらなくなる。
晩メシを食おうとしても、眠くて眠くてメシが食えなくてウトウトして、
睡魔に襲われてたまらなくない。おっちゃんが痛感した経験則。
それじゃ、おっちゃんもう寝る。

603:132人目の素数さん
18/04/09 11:30:05.97 HtZBrI5W.net
おっちゃんです。
面白そうな発見があった?
いや、多分そうなんだろうな。他の論文にした方がどうかは正直迷っている。
証明はここに書かないよ~ん。

604:132人目の素数さん
18/04/09 11:40:15.34 HtZBrI5W.net
冷静に書いたレスを見直すと、バカっぽい文章を書くというのも面白い。
バカっぽい文章を書いた後に冷静に読むと、笑えない訳ではない。
もっとネジが吹っ飛んだ文章を書くにはどうしたらいいんでしょうね。

605:132人目の素数さん
18/04/09 11:54:40.42 HtZBrI5W.net
まあ、体の健康など、とても大事なモノに対しては、生真面目過ぎる位にトコトンマジメになった方がいい。
いうまでもないが、一般に体の健康は誰にとっても大事。
その一方で、本当にテキトーでよさそうなモノに対しては、テキトーでいい。
ここで、注意すべき点は、マジメ腐ってばかりいたら、ストレスが溜まって体によくないこと。

606:132人目の素数さん
18/04/12 15:25:45.19 PUtcw2N0.net
おっちゃんです。
ジョーク抜きで、論文の参考文献は日本語と2、3冊の洋書になるよ~ん。
だから、参考文献は日本語でその引用した本の題名の英訳の後に (in Japanese)
が付く。この点は予めよろしく。ま、決して変な論文にはならんから。
大部分は、自分の脳ミソで考えて出来た論文だ。

607:132人目の素数さん
18/04/12 15:42:02.56 PUtcw2N0.net
>>554の訂正:
日本語と2、3冊の洋書 → 日本語の本と2、3冊の洋書
といっても、洋書も薄いんだが。
一応、標準的なテキストとはいわれているようだが。

608:132人目の素数さん
18/04/12 15:59:08.04 PUtcw2N0.net
う~ん、おっちゃん工房とでも呼ぶか。
それとも、おっちゃん研究所の方がいいのかね。
別に大学の研究室が与えられた訳でもないし、
おっちゃん研究室というのもおかしいだろうしな。

609:132人目の素数さん
18/04/12 16:33:09.18 PUtcw2N0.net
自分が数学する部屋の話ね。

610:132人目の素数さん
18/04/12 16:45:15.23 PUtcw2N0.net
まあ、基本や多角的視点というのはとても大事ですな。
このことをつくづく感じているこの頃である。

611:132人目の素数さん
18/04/13 06:57:18.30 ga984RfM.net
おっちゃんです。
今日は漫談を書く(演じる)。
内容的にはエッセーの延長線上にあると思うが、漫談を書く(演じる)のははじめて。

612:132人目の素数さん
18/04/13 09:15:20.84 ga984RfM.net
え~、じゃ、漫談はじまりはじまり。
南海ホークスの杉浦は少し変わったフォームで物凄い勝利数を挙げた伝説的な投手だそうで、
杉浦の投球フォームに興味があって、そのフォームを見たかったので、動画を見てみた。
投げ始めはオーバースローに近く、途中から体を沈めながら球を持った右手は丸く円を描いて、
その後に体を沈め切ったら腰の真横から投げるような、サブマリーンに近いアンダースローの投法だった。
球を放って投げる瞬間を真横から見ると、オーバースローのように上半身を前に乗り出して投げる感じで、
オーバースローの投手のように上半身を前に傾ける投げ方に比較的よく似ている。
右打者にとって背後から球が投げられて来る漢字、という杉浦の投げ方の説明のニュアンスが何となく分かった。
ストレートはとても速くて打者の近くで浮き上がり、右打者にはスライダーで空振りさせたりする一方で、
左打者には体に当たりそうな曲がり方をする大きなカーブで三振やゴロを奪ったようだ。
年間勝利数は、入団した1958年から64年までの間毎年15位は余裕で、20勝~30勝以上の勝利数の年が5年ある。

613:132人目の素数さん
18/04/13 09:17:52.64 ga984RfM.net
しかし、65年以降は余り勝てなくなったようだ。アンダースローだけど、シンカーは投げても余り有効な効果はなく、
むしろシンカーを覚えたために持ち味だった持ち球の威力がなくなったのかも知れない。防御率は2点台~3点台の年が多い。
38勝して日本一に輝いた1959年の日本シリーズでは、幻の4連勝を成し遂げたという。日本シリーズで4連勝したのは杉浦だけだそうだ。
ナインのメンバーには、ノムさんや大沢親分、リリーフで同じアンダースローの皆川がいた。ノムさんは杉浦が投げるときは気楽で退屈だったそうだ。
杉浦は足も速くて、もう少しで日本人初のメジャーリーガーになる勢いだったが、実際に日本人初のメジャーリーガーになったのは、村上だった。
まあ、杉浦の投げ方は、キャッチャーや打者側から見たら、投げる瞬間に球の握りが見えるから、
杉浦のように腕を回すようにして速く投げる投手でないと、球の握りが見え球種がバレて打たれ易いかもな。
杉浦と互角に投げ合ったのが西鉄ライオンズの鉄腕稲生。その稲生も20勝以上から40勝以上勝つ年が何年もあって凄かったようだ。
ノムさんは鉄腕稲生の球種別の投げ方を見破れたらしい。
まあ、投手の中で杉浦と皆川という2人のアンダースローが主な貢献を果たしつつ、日本一に輝いた南海の例は珍しいわな。
サイドスローではあるが、最近では西武ライオンズの黄金期が比較的に似た例に近くなるとは思うが、
先発も含めて何人ものアンダースローが勝利のために主な役割を担う南海のような例は、余り知らんな。

614:132人目の素数さん
18/04/13 09:29:22.51 ga984RfM.net
>>560の訂正:
背後から球が投げられて来る漢字 → 背後から球が投げられて来る「感じ」
皆川は杉浦とは違いシンカーを持ち味として投げて、
ストレートは杉浦のストレートとは違い打者の手元で下に落ちるようだ。
杉浦と皆川は、同じアンダースローでありながら、全く違うようだ。

615:132人目の素数さん
18/04/13 11:59:46.58 ga984RfM.net
以下はおっちゃんの予言である。あくまでも予言に過ぎず、真に受けないでほしい。
今日は遊びで漫談を書いている(演じている)ので、遊びの範囲内で考えてほしい。
オイラーの定数γは無理数どころか確実に超越数である。
ただ、何でとてつもなく難しい未解決問題をいとも容易く示せてしまったのかが分からない。
何ということか、超常現象が起きてしまった!
ただ今、私はこの予言の証明に間違いがないかを何度も確認していて、疑心暗鬼になっている最中である。

616:132人目の素数さん
18/04/13 12:29:12.89 ga984RfM.net
まあ、南海の杉浦のピッチングフォームはサイドスローに近いアンダースローというべきか?
ピッチングの画像を見ると、右打者にとって背後から投げるような独特の投法であることは確かだが。
地面擦れ擦れの高さから投げる渡辺俊介のタイプのようなアンダースローのフォームとは全く違うようだが。

617:132人目の素数さん
18/04/13 21:03:41.61 ga984RfM.net
それじゃ、おっちゃんもう寝る。

618:132人目の素数さん
18/04/15 14:26:16.97 wdy7VPFd.net
おっちゃんです。
鉛筆の芯を全部使い切�


619:驍ニ、約 50km の距離分だけ書けるそうだ。マラソンの距離約 42.2km より多い。 普通に鉛筆削りで削って芯の先端を三角錐状にして使うと、大体の概算式は 50×1/3=16.6 km で1の位以下を切り上げると大体 20km 分の距離書ける。 シャープペンシルだと、40本の芯を全部使い切って大体 10km の距離分だけ書ける。 ボールペン1本だと、全部使っても書ける距離は 2km にも満たない。 どうやら、とても大きな差があるようだ。 鉛筆の芯を肥後守で削って鉛筆から取り出して、芯ホルダ-にはめて使うのもいいかもな。 鉛筆は筆記具としては優秀なようだ。



620:132人目の素数さん
18/04/16 16:06:36.26 PygIix2V.net
おっちゃんです。
私がここの支配人になってしまったようである。
ここ2、3日、現実の色々な処理をしているところである。
こうした現実での処理中は、パソコンに向き合う暇がなくなっている。
ここ2、3日は、寝る前に余った時間を割いて書いている。

621:132人目の素数さん
18/04/16 16:14:15.47 PygIix2V.net
太陽系の惑星について、或る1つの�惑星の楕円軌道緒繧ノ異なる惑星bェ載っかって
元来の公転速度で公転している状況を想像した。
天体観測は面白いかも知れない。

622:132人目の素数さん
18/04/16 16:23:27.13 PygIix2V.net
何やら寝ぼけて書いていたら文字化けが生じたようで、>>568の書き直し。
太陽系の惑星について、或る1つの惑星の楕円軌道上に異なる惑星が載っかって
元来の公転速度で公転している状況を想像した。
天体観測は面白いかも知れない。
それじゃ、おっちゃんもう寝る。

623:132人目の素数さん
18/04/20 14:54:27.60 CsrKNpAp.net
おっちゃんです。
まあ、>>563の「オイラーの定数γは超越数である」ことは、
まだ示せていないし、遊びで書いたに過ぎず、信用しないように。
実際に計算してみると(ここには書かないが)、信じられないが、
な、な、な、何とγは有理数の可能性がある。
おっちゃんビックリ仰天。果たしてこれは気のせいでしょうかね。

624:132人目の素数さん
18/04/20 16:11:59.75 CsrKNpAp.net
もし本当に γ∈Q でよいなら、有理数γの循環小数の部分が分かっていないことが問題になって、
今までγの循環小数の部分が分かっていないのがむしろ不思議でならない。

625:132人目の素数さん
18/04/20 17:41:26.12 CsrKNpAp.net
それじゃ、おっちゃんもう寝る。

626:
18/04/22 14:37:48.34 grsmD3Q0.net
「ガロア理論の頂を踏む」を読んでいます。
最初はユークリッドの互除(ごじょ)法から入ります
定理1.1
(x, y) を x と y の最大公約数とする
a, b ∈N で a を b で割った余りが r のとき
(a, b) = (b, r)
証明
(a, b) = g, (b, r) = h とおいて g = h であることを示す
a, b は g の倍数なので、
a = a'g, b = b'g …①
と書ける
a を b で割った商を q, 余りを r と置くと
a = qb + r …②
これより r = a - qb
これに①を代入して r = a'g - qb'g = g(a' - qb')
となり r も g を約数として持つ
もともと b は g を約数として持つから g は b と r の公約数
公約数は最大公約数以下だから…③
g <= h

627:
18/04/22 14:51:48.63 grsmD3Q0.net
定理1.1 証明続き
b, r は h の倍数なので
b = c'h, r = r'h
と置くことができ、これを>>573 ②に代入して、
a = qb + r
= qc'h + r'h
= (qc' + r')h
a は h を約数に持つ。b はもともと h を約数に持つから
h は a, b の公約数
③a, b の公約数はa, b, の最大公約数g以下だから
g>=h
g<=h かつ g>= h より g = h 証明終わり

628:
18/04/22 15:11:14.27 grsmD3Q0.net
>>573 >>574 所感
「ガロア理論の頂を踏む」では以上の証明「g>=h, g<=h ゆえに g = h」方式になっていますが、
私の好み�


629:ヘ定理1.1 を次のように書き換えます 「(x, y) を x と y の公約数全体の集合とする a を b で割った商を q, 余りを r とするとき (a, b) = (b, r) 特に最大公約数についても一致する」 証明は https://ja.wikipedia.org/wiki/%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E3%81%AE%E4%BA%92%E9%99%A4%E6%B3%95 に書いておきました。この場合でも必要条件の証明と十分条件の証明の二段階が必要です 「ガロア理論の頂を踏む」では複数の構成員からなるもの同士のイコールというのは、概念として難しいとの判断だったのでしょうか(本の最初の定理ですし) なお③公約数は最大公約数以下、は高等学校数学では証明抜きに天下り式に叩き込むのですが、 これも証明が必要な事項でしょう、証明は難しくありませんが、結構手間です 高木貞治 https://ja.wikisource.org/wiki/%E5%88%9D%E7%AD%89%E6%95%B4%E6%95%B0%E8%AB%96%E8%AC%9B%E7%BE%A9/%E7%AC%AC1%E7%AB%A0/%E6%9C%80%E5%A4%A7%E5%85%AC%E7%B4%84%E6%95%B0%EF%BC%8C%E6%9C%80%E5%B0%8F%E5%85%AC%E5%80%8D%E6%95%B0 日本発の整数論の本では、最初のゴール「素因数分解は一通り」へ邁進するのに、最小公倍数・最大公約数から証明しはじめるようですが、 ユークリッドはそうしていないようです、互除法→拡張互除法へとすすみます 拡張互助法は、実例で示して証明したことにする本がほとんど、ユークリッドもそうしています、これを証明として記述するのは道具立てが必要ですね 行列で証明してみました https://ja.wikipedia.org/wiki/%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E3%81%AE%E4%BA%92%E9%99%A4%E6%B3%95



630:
18/04/23 15:16:41.55 GMUhdjSZ.net
>>573
「ガロア理論の頂を踏む」を読んでいます。
定理1.2
a, b, d ∈Z, (a ≠0, b ≠0)
g を a, b, の最大公約数とする
一次不定式 ax + by = d …①
①は d が g の倍数のとき整数解を持ち、d が g の倍数でないとき整数解を持たない。
「ガロア理論の頂を踏む」では実例をもとに説明し、実例の説明をもって証明にかえています。
実例はわかりやすいものですが、これを証明として記述するのは、どうしたものでしょうか?思いつきません。

631:
18/04/24 22:36:17.52 6s/UeTxC.net
>>573
「ガロア理論の頂を踏む」
定理1.3
a, b, c, d ∈Z, a ≠0, b ≠0, c ≠0, a, b, c, d の最大公約数を g とする
ax + by + cz = d …①
①において d が g の倍数のとき、①を満たす整数解 x, y, z が存在する
d が g の倍数でないとき、整数解 x, y, z は存在しない
ディオファントスの方程式です。
URLリンク(ja.wikisource.org)
の説明は難解でここで挫折する人は多数、とみました
しかし「ガロア理論の頂を踏む」は、そう簡単に脱落させません

632:
18/04/24 22:55:39.05 6s/UeTxC.net
>>577
定理1.3 証明
ax + by の取りうる整数の集合 S について、S の任意の要素 u, v, および整数 k に対して
u + v
ku
は S に含まれる。実際、u, v が
u = ax_1 + by_1 + cz_1, v = ax_2 + by_2 + cz_2 と表現できれば、
u + v = a(x_1 + x_2) + b(y_1 + y_2) + c(z_1 + z_2) ∈S
ku = a(kx_1) + b(ky_1) c(k_z1) ∈ S
今 S に含まれる正の整数のうち最小の数を h とする。すると、S の要素はすべて h の倍数になっている…②
というのは、もし h の倍数で表せない数 m ∈ S が存在したと仮定すると、
m を h で割った商を q, 0 でない余りを r とおいて m = qh + r、r = m - qh
仮定より m ∈ S, h ∈ S より qh ∈ S から r = m - qh ∈S
r は割り算の余りなので割る数 h より小さく、これは h が S の最小の数であるという仮定に反する
すなわち②は正しい
ax + by の式で x = 1, y = 0 を代入すれば a となるから、a ∈ S, 同様に b ∈S, c ∈S
ということは、a, b, c は h の倍数であり、h は a, b, c の公約数である
したがって a, b, c の最大公約数 g よりも h は小さいから h <= g … ③
また a, b, c はそれぞれ g の倍数だから、a = a'g, b = b'g, c = c'g とおいて
ax + by + cz = (a'x + b'y + c'z)g となり S の要素は g の倍数である、とくに h∈S も g の倍数だから h >= g …④
③④より h = g
すなわち ax + by + cz = g となる x, y, z の存在が証明された。これを x_3, y_3, z_3 とすると、ax_3 + by_3 + cz_ 3 = g
d が g の倍数で、d = ng となっておれば ax + by + cz = d の整数解の一つは nx_3, ny_3, nz_3 となる、実際代入して確かめよ
S の要素はすべて g の倍数だから、d が g の倍数でないときは方程式>>577①を満たす整数解は存在しない

633:
18/04/24 22:58:55.75 6s/UeTxC.net
>>578
訂正
×ax + by の取りうる整数の集合 S について
○ax + by + cz の取りうる整数の集合 S について

634:
18/04/24 23:07:03.11 6s/UeTxC.net
>>578
の証明は wikipedia のベズーの等式
URLリンク(ja.wikipedia.org)
の証明として記述しておきました。以前の証明は、これまた難解極まりないもので、これも高木「初等整数論講義」の罪なのでしょうか?
ベズーの等式は ax, + by の二項の式ですから、拡張ユークリッドの互除法で直接、適合解を求めることができます

635:132人目の素数さん
18/04/26 12:24:41.25 q3t7aS/P.net
おっちゃんです。
オイラーの定数のことはさておき、今日も漫談をする。

636:132人目の素数さん
18/04/26 12:37:07.24 q3t7aS/P.net
JR総武線の新宿駅より東側にある都内の駅の互いに隣接する2駅間の話。
新宿駅から四ツ谷駅間について。
新宿駅から代々木駅間は、総武線と山手線が大体南北に進む。
代々木駅から四ツ谷駅間は、基本的には東西に進む中央線が総武線の北部を真っすぐ走る。
新宿-代々木間:目と鼻の先のような関係で、代々木駅から新宿駅が見える。
       尚、代々木駅は渋谷、品川方面の山手線と新宿方面の総武線とが乗り換え出来る。
       また、千葉方面の総武線の乗り換えホームからは、その隣を走っている中央線が見えにくい。
代々木-千駄ヶ谷間:代々木駅を出発すると、すぐ左側に千葉行きの総武線は左に曲がり、
       しばらく直っ直ぐ進むと千駄ヶ谷駅に着く。距離は新宿-代々木間より長い。
千駄ヶ谷-信濃町間:お互いにほぼ真っ直ぐ進むと着く関係。記憶が正しければ、
       千駄ヶ谷駅の新宿方面のホ-ムから南側を見ると、特別ホームがある。
       昔は、信濃町駅にも同様に新宿方面のホ-ムから南側を見ると、
       特別ホームがあったが、現在は信濃町駅に特別ホ-ムはない。
信濃町-四ツ谷間:千葉方面の総武線は、信濃町駅を出発して少しすると、
       左側に曲がりながらトンネルに入り、トンネルの中も左に曲がりながら進む。
       そうしてからトンネルを出ると、直後に四ツ谷駅に着く。トンネルの長さはどれ位でしょうかね。
       四ツ谷駅とトンネルとは目と鼻の先で、四ツ谷駅からトンネルの中が大きく見える。
       

637:132人目の素数さん
18/04/26 13:41:20.29 q3t7aS/P.net
四ツ谷駅から水道橋駅間について。
四ツ谷駅から飯田橋駅間はほぼ南北に総武線と中央線が走る。
飯田橋駅と水道橋間は大体東西に総武線と中央線が走る。
市ヶ谷駅と飯田橋駅は、四ツ谷駅と水道橋駅の間の長さを等間隔に4等分するような感じ。
四ツ谷-市ヶ谷間:、確かこの区間のどこかで中央線と総武線が交錯して、千葉方面の総武線で北に進むと、
          途中から南北に走る総武線の西側を走っていた南北に走る中央線が、南北に走る総武線の東側を走るようになる。
市ヶ谷-飯田橋間:この区間は、基本的に、総武線、中央線の東側が高くなっていて、ここには昔は緑道のような歩道があった。
          千葉方面の総武線から左を見ると、自動車が沿って走っているのが見えて、途中から昔江戸城のお濠だった溜池が見える。
          島状のホームの飯田橋駅は千葉方面に見ると右、四谷方面に見ると左に大きくカーブしていて、傾斜している。
          ここで総武線は大きく曲がる。飯田橋駅の南側の出口は何かの中を進むような感じになっている。
飯田橋-水道橋間:千葉方面の総武線に乗ると、飯田橋駅で大きく曲がった後は真っすぐ東に進む。
          景色関係で


638:特筆することは余りない。水道橋駅はお互いに向かい合うホームになっている。           水道橋駅を降りると、神田川が流れていて、少し北に進むと都営三田線の水道橋駅があって、           JR総武線の水道橋付近には坂道があったり、東京ドームや遊園地があったりする。他にも水道橋駅付近にはなど色々ある。 じゃ、水道橋駅と御茶ノ水駅間は、メシ食って来てから書く。



639:132人目の素数さん
18/04/26 15:51:29.26 q3t7aS/P.net
そういえば、飯田橋駅の南側の出口は何かの中を進んで出ると、
急な坂になっていて、右の近くには駅ビルのような建物がある。
じゃ、続きの水道橋駅から浅草橋駅間について。
この区間は、基本的には、どちらも大体東西に走る総武線と都営新宿線の駅について、
水道橋駅と神保町駅の間、御茶ノ水駅と小川町駅の間、秋葉原駅と岩本町駅の間、浅草橋駅と馬喰横山駅の間が、
それぞれ、比較的近い。ここに、神保町駅、小川町駅、岩本町駅、馬喰横山駅は、その順に都営新宿線の駅。
総武線に話を戻す。御茶ノ水駅と浅草橋駅の中間に秋葉原駅があるような感じ。
水道橋-御茶ノ水間:この区間は、千葉方面の総武線から左を見ると神田川が見えて、中央線と総武線が蛇行しながらゆっくり進む。
        千葉方面の総武線から右の窓には景色らしき風景は特にない。確か御茶ノ水駅の近くで総武線と中央線が複雑に入り組んで
        東に進む総武線と中央線、西に進む総武線と中央線が並行して走るようになり、御茶ノ水駅に着く。
        御茶ノ水駅はとても狭く、東に進む総武線と中央線とでお互いに乗降して乗り換えらることが出来、
        西に進む総武線と中央線とでお互いに乗降して乗り換えらることが出来る。東西に走る総武線は東西に走る中央線に両側を挟まれている。
        御茶ノ水駅の千葉方面の総武線或いは東京方面の中央線のホームからは、神田川を渡る丸ノ内線が少し外に出て走っているのが見える。
御茶ノ水-秋葉原間:この区間も複雑に総武線と中央線が入り組んでいて、千葉方面に総武線で進むと、途中でレンガ造りの建物の上を中央線が走っているのが右に見える。
        川に架けられた橋の上にあるアーチのような構造物も見える。この区間のどこかで神田川の上を走る。左側にはいうまでもなく秋葉原の電気街。
秋葉原-浅草橋間:お互いに片方の駅から他方の駅を見ることが出来る。ほぼ真っすぐに線路の上を走る。
        ただ、秋葉原駅は浅草橋駅より高い位置にあり、秋葉原駅から浅草橋駅に行くときは下に走り、
        浅草橋駅に行くときは上に走る。風景で特筆する点はない。浅草橋の近くには、人形の久月がある。交差点も多い。

640:132人目の素数さん
18/04/26 16:50:18.57 q3t7aS/P.net
浅草橋駅から亀戸駅間について。
浅草橋-両国間:総武線の駅の中で浅草橋駅は、総武線からJR線が全く見えない唯一の駅で、
           秋葉原駅と両国駅間は総武線に沿って走る電車は何もない。
           浅草橋駅から千葉行きの総武線に乗ると、右に曲がりながら隅田川へと出て、
           右側には両国橋、左側には遠くに蔵前橋が見える。そうして隅田川を渡ると、両国の町に入り、
           今度は左側に少し曲がった後に両国駅に到着する。両国駅からは国技館が見える。
           両国駅の建物を外から見ると或る種の洋館のように見えて、両国駅のホームの北側には
           島状の特別ホームがある。何かの電車がこの特別ホームから出発したりこのホームに到着したりするんでしょうか。
両国-錦糸町間:この区間の距離は、浅草橋駅と両国駅間の距離、錦糸町駅と亀戸駅間の距離より長い。線路は真っすぐで、高低差は殆どない。
           千葉方面の総武線に乗って両国駅を出発すると、直ちに総武快速線の横浜方面の列車、千葉方面の列車が合流して、
           これらの総武快速線が各駅停車の総武線の北側を走るようになる。風景は東京スカイツリーが北側に見える。
           風景は住宅街に比較的近い感じになる。錦糸町駅にはテルミナという駅ビルや映画館が近くにあって、都バスの乗り場が近くには多い。
錦糸町-亀戸間:お互いに片方の駅から他方の駅を見ることが出来る。線路は真っすぐで、高低差は殆どない。風景は比較的住宅街に近い感じ。
           亀戸駅には少し高い駅ビルがある。この駅ビルの中を通り抜けるようにして、東武亀戸線に乗り換えることが出来る。
           尚、亀戸駅の南には貨物線と見られる単線の列車の線路がある。駅の南側には歩道橋がある。少し東に進むと緑道がある。
           駅の北側には商店街があって北に進むと亀戸天神がある。

641:132人目の素数さん
18/04/26 17:51:05.11 q3t7aS/P.net
一応、浅草橋-両国間の一行目は、総武線の駅の中で浅草橋駅は、総武線から「総武線ではない他の」JR線が全く見えない唯一の駅
ということで。
では、亀戸駅から小岩駅間について。
この区間は、基本的には、隣り合う2駅の距離が長い。中でも、亀戸駅と平井駅間の距離、新小岩駅と小岩駅間の距離が長い。
亀戸-平井間:この区間では、確か貨物線と見られる単線の列車の線路が途中までは南側にある気がする。
          どこから単線の線路が各駅停車の総武線の北側を走るのかは不明。線路に高低差は余りない。
          千葉方面の各駅停車の総武線に乗ると、旧中川放水路の付近で電車は左に曲がる。
          車窓の風景は住宅街に近くなる。平井駅の付近には余り行ったことがないが、
          平井駅の近くには商店街や旧中川、荒川放水路がある。
平井-新小岩間:荒川放水路を電車が渡るときは北側に蔵前通りの橋が見える。川幅はやや短くなっている。
          新小岩の駅の南側は住宅地といってよく、江戸川区と葛飾区の境目に新小岩駅はある。
新小岩-小岩間:新小岩駅は、総武快速線も止まり葛飾区にある。小岩駅は、総武快速線は止まらず江戸川区にある。
          この区間はほぼ真っすぐで、風景は住宅地といってよいと思う。小岩駅と江戸川は少し距離があったような気がする。
          確か、小岩付近の江戸川の川辺は多少の芝生があって運動場のようになっている。

642:132人目の素数さん
18/04/26 18:07:09.47 q3t7aS/P.net
以上、JR総武線の新宿駅より東側にある都内の駅の互いに隣接する2駅間の漫談でした。
両国駅より東側の総武線の互いに隣接する2駅間の距離は長くなる傾向がある。
新宿駅より西にあるJR総武線の駅や、総武線の線路の走り方、風景などといったことは余りよく分からない。

643:132人目の素数さん
18/04/26 18:09:23.06 q3t7aS/P.net
またそのうちに漫談をする。
それじゃ、おっちゃんもう寝る。

644:132人目の素数さん
18/04/30 10:54:36.55 KSFNm0J4.net
おっちゃんです。
取り敢えず、>>583-586の部分で気付いたところだけ訂正。
>>583の訂正:
飯田橋-水道橋間の最後の文について。
他にも水道橋駅付近にはなど色々ある。 → 他にも水道橋駅付近には色々ある。
>>584の訂正:
水道橋-御茶ノ水間について。
>御茶ノ水駅はとても狭く、東に進む総武線と中央線とでお互いに乗降して乗り換えらることが出来、
>西に進む総武線と中央線とでお互いに乗降して乗り換えらることが出来る。
の部分の「乗り換えらる」は「乗り換える」に訂正。
秋葉原-浅草橋間の3行目について。
浅草橋駅に行くときは上に走る。 → 秋葉原駅に行くときは上に走る。

645:132人目の素数さん
18/04/30 11:00:40.35 KSFNm0J4.net
ま、10年近く前の話で、今の総武線の状況と合っているかどうかは知らん。

646:132人目の素数さん
18/04/30 12:12:43.18 KSFNm0J4.net
3日間半かけて、個人的には興味がある日本史上の或る事柄の wiki のサイトを読んだ。
全体的には詳細な記事で、時間をかけて読むと、改めて日本は広いと感じた。
高校までの歴史の教科書にはない歴史上の人物のことが書かれていたりする。
そのサイトには歴史の参考文献が挙げられていた。これを読むとより面白いのだろう。
読んだ wiki のサイトは歴史の教科書より面白くて比較的よく書けていると思った。
史実は小説より奇なり。

647:132人目の素数さん
18/04/30 12:22:34.84 KSFNm0J4.net
些細なことだが、>>591の訂正;
個人的には興味がある日本史上の或る事柄 → 個人的には興味がある或る日本史上の事柄
いや~、3日半かけてやっと読めた。

648:132人目の素数さん
18/05/06 12:09:08.35 3fIZdik+.net
おっちゃんです。
さて、何を書きましょうか。
ま、テキトーに綴る。

649:132人目の素数さん
18/05/06 12:51:14.72 3fIZdik+.net
富山県の東側の剱岳の近くに、観光ツアーで、ケーブルカーで行って来た。
付近の山の平均的な標高は2000m以上あって、雪がまだ降っていたり、山の頂上には雪が積もっていた。
5月のそのあたりの温度は察してほしい。
富山はチュ-リップが特産品だが、栽培の様子は特に見れなかった。
♪チューリップ、チューリップ♪ が花を咲かせていれば、一面が色とりどりになって、目立つ筈だと思われる。

650:132人目の素数さん
18/05/06 13:07:22.85 3fIZdik+.net
あ、♪チューリップ、チューリップ♪ は勿論富山県の平野部の話ね。
あと、剱岳の近くでは、4、5月だと、歩ける可能性は比較的低いが、雪の大谷が有名なようだ。
個人的には、剱岳付近の山々の山頂付近は寒かった。
それじゃ、一旦メシ食ってから。

651:132人目の素数さん
18/05/06 15:52:33.46 3fIZdik+.net
地形的には浅瀬が少なく、沖に進むにつ�


652:黷ト海底が突如として深くなる 富山湾の蜃気楼は見れなかった。富山湾は独特の構造をしている。 今回は金沢へのルートをたどって富山に行った筈だが、金沢に行ったときと変わっていたのは、 北陸新幹線が開通して、黒部宇奈月温泉駅が建設されていた。 最初は何線が開通したのか?と疑問に思っていた鉄道のルートだったが、 走行中の北陸新幹線を見て、北陸新幹線のルートと分かった。 北陸新幹線の駅は、以前からJR東日本が管轄する上越新幹線の東京駅-飯山駅間はJR東日本管轄、 上越妙高駅のみJR東日本、JR西日本両管轄、糸魚川駅-金沢駅間はJR西日本管轄になるようだ。 東京駅、新大阪駅など、在来線としてはJR東日本かJR西日本の管轄になる駅も含め、 東海道新幹線の全駅をJR東海が管轄するのとは少し状況が違うようだ。 やはり、おっちゃん的には~、富山の景色は平野部から眺める東西に伸びる立山連峰か富山湾の印象が強い。



653:132人目の素数さん
18/05/06 16:48:24.18 3fIZdik+.net
越後の新潟県だと、山と海とが接している場所(北陸道の糸魚川市の親不知付近)や、
大体方角は西側にあたる日本海に沈む夕日が見れる場所などがあったりする。
その昔、越中富山県は丹羽秀長の後継者丹羽氏の領地だった。

654:132人目の素数さん
18/05/06 17:21:22.95 3fIZdik+.net
だけど、富山県、石川県のほぼ全域、新潟県の南西部はまだ岐阜県と滋賀県の県境より東側にあるのに、
何故そこを走る元国鉄の在来線の駅は、現在、JR西日本管轄になっているのでしょう。
こと、新潟県の在来線の駅については実に不思議だ。その南西部の糸魚川駅はJR西日本管轄になる。
あと、通常、滋賀県を近畿地方に含めることはしても、北陸地方の石川県や富山県は近畿地方に含めない。

655:132人目の素数さん
18/05/06 17:37:04.07 3fIZdik+.net
富山県の話題は他にもまだ多くあると思うが、
それじゃ、今日はおっちゃんもう寝る。

656:132人目の素数さん
18/05/08 17:12:07.98 2PXD84Pu.net
おっちゃんです。
このスレに書きに来ていると、数学板でレスされるスレには何らかの法則性が見られることがあるようだ。
書き込まれるときは大体決まってageられているスレがあったり、
各スレに書き込まれる頻度の高低差があったりする。
書き込まれないスレには或る期間全くレスがなかったりする。
これらのような法則性が見られることがある。
以上、600回記念カキコにおっちゃんの観察カキコをした。
それじゃ、おっちゃんもう寝る。

657:現代数学の系譜 雑談 古典ガロア理論も読む
18/05/10 08:08:09.48 iwUm1a/i.net
おっちゃん、どうも、スレ主です。
事務管理(下記)ご苦労さまです(^^
徐々に復帰します(^^
URLリンク(ja.wikipedia.org)
事務管理(じむかんり:羅negotiorum gestio)とは、大陸法系の私法において、法律上の義務がない者が、他人のために他人の事務の管理を行うことをいう。不当利得や不法行為と並ぶ法定債権の発生事由である。
日本法上は、民法第697条から702条までに規定がある。以下、日本法上の事務管理について解説する。
目次
1 概説
1.1 事務管理と法制度
1.2 民法上の事務管理
2 事務管理の成立要件
3 事務管理の効果
3.1 違法性阻却
3.2 管理者の義務
3.3 管理者の権利

658:132人目の素数さん
18/05/10 20:57:23.10 F9FGwqjr.net
お前がしなきゃいけないのは復帰ではない
削除依頼だ

659:132人目の素数さん
18/05/10 23:08:42.00 APwOdRZG.net
藤林丈司

660:132人目の素数さん
18/05/12 14:33:16.88 clT81m6X.net
おっちゃんです。


661:そういえば、>>597の一番下の >その昔、越中富山県は丹羽秀長(長秀)の後継者丹羽氏の領地だった。 は >その昔、越中富山県は、結果的に神保長住や佐々成政などの後継支配者となる加賀百万石の前田氏の領地だった。 に訂正。織田四天王の一人で有能だった丹羽長秀の領地は、主に越前の福井県の方だったようだ。 室町時代から安土桃山時代の越中富山の歴史は、上杉氏にも支配されたりと、色々と複雑だったみたい。



662:132人目の素数さん
18/05/12 15:01:10.40 clT81m6X.net
大きな間違いは一応訂正した。それじゃ、テキトーにカキコは続く。

663:132人目の素数さん
18/05/12 18:23:50.07 clT81m6X.net
従来の北陸本線は、ここ2、3年でJR西日本の管轄の運行状態から
米原駅-金沢駅間      北陸本線       JR西日本管轄、
金沢駅-倶利伽羅駅間 IRいしかわ鉄道線    IRいしかわ鉄道管轄、
倶利伽羅駅-市振駅間 あいの風とやま鉄道線 あいの風とやま鉄道管轄、
市振駅-直江津駅間  えちごトキめき鉄道日本海ひすいライン えちごトキめき鉄道管轄
というように、幾つかの会社や路線に分離されて運行されることになったようだ。
以前とは経営体制が変わったようだ。
まあ、乗り換え時に不便になったと思うが、新潟県内では、糸魚川の近くで
海に迫った山と隣り合わせで海沿いに従来の北陸本線が走っているところがあって、
山崩れ一回の一撃で線路が機能しなくなって電車が不通になりそうな場所もかなり見られた。
そのようなこともあり、安全強化の対策の面では、そういったように幾つかの会社に分割して
北陸本線を運行させて走らせるのがいいんでしょうな。以前より雪崩などの災害対策はし易くなったと思う。
それじゃ、おっちゃんもう寝る。

664:132人目の素数さん
18/05/13 11:32:35.96 qcoSdqFx.net
おっちゃんです。
今日は何を書こうか。
ま、テキトーに綴る。

665:132人目の素数さん
18/05/13 11:55:38.11 qcoSdqFx.net
昨日は、これといって特に書くことが思い浮かばなかった。

666:132人目の素数さん
18/05/13 16:17:27.17 qcoSdqFx.net
球の詰め込み問題やケプラー予想を少し書いてあり、内容の物珍しさから
ダイヤモンドはなぜ美しい?という本を読んでみることにした。
ネットワークのグラフは、空間Vの直積 V×V とその部分集合 E⊂V×V との
対 G=(V, E) で構成される。Vの元を頂点或いは点、Eの元を辺と呼ぶ。一般には
E≠Φ のとき、任意の e∈E に対して或る v_1, v_2 ∈V が存在して、e={v_1, v_2}。
通常、任意の e∈E に対して e={v_1, v_2} なる v_1, v_2 ∈V は一意に決まると仮定する。
e={v_1, v_2} のとき v_1 と v_2 は隣接するという。v_2 に対して
或る e'∈E と或る v_3∈V が存在して e'={v_2, v_3} となるとき、2辺 e, e' は隣接するという。
card(V)<ℵ_0 のときGを有限グラフ、card(V)=ℵ_0 のときGを無限グラフという。
細かいことを抜きにすると、大雑把には上のように定義される。
有限グラフは 〇-〇-〇 というように比較的容易に図示出来るが、無限グラフは一般には図示出来ない。
同書は何やらグラフ上での解析を目的としているようで、最終的には離散的な図形についての
何らかの極限を取ることで連続的な図形への移行をするという。ここで、有理直線Q上で
有理数の稠密性に着目して考えてみたが、card(Q)=ℵ_0 なので有理直線は無限グラフで図示出来ると思うが、
Qは図示出来ないんですわな。有理直線Qのような稠密な状態の図形は幾何的には離散的な図形とも連続的な図形とも受け取れるが、
上の無限グラフの定義ではQの図示は出来ないですわな。〇-〇-〇 ではなく、
任意の G=(V, E) の辺 e={v_1, v_2} v_1, v_2 ∈Vは隣接する頂点 を図示しようとするときに
v_1〇-〇v_2 ではなく v_1〇-………-〇v_2 のように図示されて2頂点 v_1 と v_2 は
隣接するとも隣接しないとも受け取れるグラフは何ていう�


667:ナしょうな。定義の際に隣接についての条件を定義から外すことは必要だわな。 このようなグラフが定義されれば、有理直線Qもネットワークのグラフで図示出来そうなんですわな。まあ、暇なとき考えて定義してみる。



668:132人目の素数さん
18/05/13 16:45:51.48 qcoSdqFx.net
まあ、何やら群と正多面体やらランダムウォークと確率やらが出て来て、見た感じでは
結晶の格子のような代物に或る種の離散的な調和を見い出そうとしているかのように見える。

669:132人目の素数さん
18/05/13 17:51:40.66 qcoSdqFx.net
それじゃ、おっちゃんもう寝る。

670:132人目の素数さん
18/05/14 11:04:41.19 t4FVfKep.net
おっちゃんです。>>609の訂正:
e={v_1, v_2} → e=(v_1, v_2)     全部訂正、
e'={v_2, v_3} → e'=(v_2, v_3)

671:132人目の素数さん
18/05/14 13:21:07.47 t4FVfKep.net
ダイヤモンドはなぜ美しい?では、ラプラス方程式という2階の線形楕円型偏微分方程式
Σ_{k=1,…,n}( ∂^2/(∂(x_k)^2) )f=0   f(x_1,…,x_n) はn変数実関数
に適用される作用素のラプラシアン △=Σ_{k=1,…,n}( ∂^2/(∂(x_k)^2) ) を扱っていて、
これを離散化している。それと同時にランダムウォークなどの確率の話も展開している。
練習問題は多いとは思う。

672:132人目の素数さん
18/05/14 15:43:02.03 t4FVfKep.net
他にも色々なことは書かれている。
結晶の格子への応用的なことが元になっているとは思う。

673:132人目の素数さん
18/05/14 16:57:33.75 t4FVfKep.net
まあ、研究に何らかの意味で使えればありがたいけど。
ラプラシアンの固有値問題につなげると使えるんでしょうかね。
それじゃ、おっちゃん今日は早めにもう寝る。

674:132人目の素数さん
18/05/14 22:07:04.82 UP3YFaC3.net
>>615
二度と起きてくるなよ、糞爺

675:132人目の素数さん
18/05/15 00:55:11.73 Ev2v91VM.net
おっちゃんです。
早めに起きた。

676:132人目の素数さん
18/05/15 01:06:35.00 Ev2v91VM.net
>>616
昨日のIDを見ると、数学の本スレで暴れていたようだが、
最適化理論は、一応、応用数学ということにもなっている。
複数個の不等式の解が表す領域を求めたりする問題などがあって、その中で最適解を見つけたりする。
何れにしろ、少なくとも、最適化理論は単純に工学だけに分類はされない。

677:132人目の素数さん
18/05/15 09:08:30.42 fp3xMnnl.net
>>618
ゴミ屋敷から出てくるな、迷惑爺

678:132人目の素数さん
18/05/15 11:42:14.19 kVC9ER5i.net
遊びに来て
ドン・キホーテと物理学 [転載禁止]©2ch.net
スレリンク(sci板)

679:132人目の素数さん
18/05/15 11:45:15.42 Ev2v91VM.net
>>619
>ゴミ屋敷から出てくるな、迷惑爺
お前さんから>>616を書き始めた点は直視すべき。
今日も数学の本スレに書いていたと見られる。IDの照合の問題にあたり、その記録は残っている。
>659 名前:132人目の素数さん 2018/05/15(火) 09:17:00.45 ID:fp3xMnnl
>>656
>後半は同意するけど、前半はよそでやってね
ポントリャーギンの連続群論は、式が比較的少なく平易で読み易く書かれた
位相群とその表現論、リー群やリー環についての有名な名著。
基本的に、表現論は代数、幾何、解析のどれにも属さず、一概には分類出来ない。
応用数学が数学に入るかとか一々問題視していたら、表現論は研究出来ない。
今では、組合せ論と表現論とが結び付いたりもしている。

680:132人目の素数さん
18/05/15 17:18:11.15 S7qsOkf0.net
半竹爺

681:132人目の素数さん
18/05/15 17:30:34.10 j0q7+E4u.net
死んだらどうなるのでしょうか?
死後の世界でもあるのでしょうか?

682:132人目の素数さん
18/05/15 17:38:53.49 Ev2v91VM.net
以後、かまってチャンは無視する。相手するのが面倒だ。
自由


683:に書くがよろしい。 どうせ、このスレも書き尽くされれば、どっかに消える。 それじゃ、今日はおっちゃんもう寝る。



684:132人目の素数さん
18/05/15 17:40:54.04 j0q7+E4u.net
世界の首都はニューヨークですか?それともロンドンですか?

685:現代数学の系譜 雑談 古典ガロア理論も読む
18/05/15 20:39:54.28 8XwFc5Zm.net
どうも。スレ主です。(^^
新スレ立てた。ここは、もうすぐ512KBで、終り
おっちゃん、新スレでも頑張って書いてくれよ~(^^
現代数学の系譜 工学物理雑談 古典ガロア理論も読む52
スレリンク(math板)

686:132人目の素数さん
18/05/24 15:43:32.97 NNJTyVZE.net


687:132人目の素数さん
18/05/24 15:44:06.30 NNJTyVZE.net


688:132人目の素数さん
18/05/24 15:44:39.31 NNJTyVZE.net


689:132人目の素数さん
18/05/24 15:45:12.86 NNJTyVZE.net


690:132人目の素数さん
18/05/24 15:45:53.64 NNJTyVZE.net


691:132人目の素数さん
18/05/24 15:46:32.58 NNJTyVZE.net


692:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch