暇つぶし2chat MATH
- 暇つぶし2ch482:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/04 21:29:36.80 K2uul6/8.net
>>441 つづき
URLリンク(en.wikipedia.org)
Nowhere dense set
(抜粋)
The union of countably many nowhere dense sets, however, need not be nowhere dense. (Thus, the nowhere dense sets need not form a sigma-ideal.) Instead, such a union is called a meagre set or a set of first category. The concept is important to formulate the Baire category theorem.
Nowhere dense sets with positive measure
A nowhere dense set is not necessarily negligible in every sense. For example, if X is the unit interval [0,1], not only is it possible to have a dense set of Lebesgue measure zero (such as the set of rationals), but it is also possible to have a nowhere dense set with positive measure.
For one example (a variant of the Cantor set), remove from [0,1] all dyadic fractions, i.e. fractions of the form a/2n in lowest terms for positive integers a and n, and the intervals around them: (a/2n ? 1/22n+1, a/2n + 1/22n+1).
Since for each n this removes intervals adding up to at most 1/2n+1, the nowhere dense set remaining after all such intervals have been removed has measure of at least 1/2 (in fact just over 0.535... because of overlaps) and so in a sense represents the majority of the ambient space [0,1].
This set is nowhere dense, as it is closed and has an empty interior: any interval (a, b) is not contained in the set since the dyadic fractions in (a, b) have been removed.
Generalizing this method, one can construct in the unit interval nowhere dense sets of any measure less than 1, although the measure cannot be exactly one (else its complement would be a nonempty open set with measure zero, which is impossible).
(引用終り)
以上


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch