暇つぶし2chat MATH
- 暇つぶし2ch454:現代数学の系譜 雑談 古典ガロア理論も読む
18/03/01 16:39:14.64 YQzR7z1m.net
>>414 関連
下記、”一点で微分可能であるが、それ以外の点で連続でない関数 [微分] ねこ騙し数学”
面白いなと思った。例によって、数式と図が綺麗なのだが
原点 x=0でのみ微分可能(即ち連続)で、それ以外の点で連続でない関数の例だと
とすると、連続な点はGδ集合で、不連続点はFσ集合になるという理論と合わないのではないかと、暫く考え込んでしまった
考え込んでしまったが、結局よく分からないまま、貼っておきます。わかる人?
(後のyahooのkousaku2038さんのコメントが適切なのかな?)
URLリンク(nekodamashi-math.blog.so-net.ne.jp)
一点で微分可能であるが、それ以外の点で連続でない関数 [微分] ねこ騙し数学 2017-06-07
(抜粋)
関数の定義域の一点で微分可能であるが、それ以外の定義域の点すべてで不連続な関数の一例。
f(x)
= x^2 (xは無理数)
= -x^2 (xは有利数)
このとき、f(x)は、x=0で微分可能で連続であるが、それ以外の点すべてで連続でない。
x=0で微分可能であることは、例えば、次のように証明されるだろう。
(引用終わり)
似た例を探すと下記がヒットしたね
URLリンク(detail.chiebukuro.yahoo.co.jp)



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch