18/02/28 17:08:18.37 WIdl5nC6.net
さて、話を整理する。スレ主の当初の主張は、大まかに言えば次の3つだったはずである。
(1) 定理1.7は間違っている。
(2) (a,b)⊂B_f が成り立つなら、f はある開区間の上で自明にリプシッツ連続である。
(3) もっと言えば、(a,b)⊂B_f が成り立つなら、f は(a,b)上の全体で自明にリプシッツ連続である。
(1)については、俺が「 定理F 」を持ち出してから すっかりフェードアウトしており、
スレ主は定理1.7の真偽について黙ってしまった。
(2)については、スレ主は未だに(2)を証明できていない。それもそのはず、
(2)はちっとも自明ではなく、>>110の方針を使わなければ(2)は証明できないからだ。
(3)については、俺が何度も反例を挙げているのに、スレ主はロクな返答をせず、ついには
「 (-1,1)⊂B_f が成り立つことと、f が(-1,1)上の全体でリプシッツ連続にならないこととは 矛盾しない」
という、俺と同じ主張をするようになった。言い換えれば、スレ主が言い出した(3)と正反対の主張を、
スレ主の方から言い出すようになった。もはや何がしたいのか意味不明である。
・ (1)について、定理1.7が本当は正しいことは理解したのか?
・ (2)について、(2)はちっとも自明ではなく、>>110の方針を使わなければ(2)は証明できないことは理解したのか?
・ (3)について、(a,b)⊂B_f が成り立つからと言って f は(a,b)上の全体でリプシッツ連続とは限らないことは理解したのか?