18/02/23 17:17:15.33 j39gs3Lv.net
>>339
> ・函数 f(x) = x^3/2sin(1/x) (x ≠ 0) かつ f(0) = 0 を閉区間 [0,1] へ制限したものは、
>コンパクト集合上微分可能だが局所リプシッツでない函数の例を与える。実際、その導函数は有界でない。
「導関数」が存在している時点で、(-1, 1) 上の各点 x_0 で A_f(x_0)<+∞ が成り立つことが確定している。
なぜなら、既に述べたように、f ' が存在する場合には A_f(x_0) = |f ' (x_0)|が成り立つからだ。
当然ながら|f ' (x_0)|<+∞ なので、A_f(x_0)<+∞ である。つまり、各 x_0∈(-1, 1) に対して
A_f(x_0)<+∞ である。そ