暇つぶし2chat MATH
- 暇つぶし2ch263:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 15:46:35.35 wmUyW91w.net
>>235
>P->Q
>が真である場合
1)
P:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」(>>245
Q:「f はある開区間の上でリプシッツ連続である」
  ↓
 f はある開区間(=リプシッツ連続な開区間)の上で ”lim sup y → x |(f(y) - f(x))/(y - x)|< +∞”である
 が言える (つまり、リプシッツ連続→”lim sup y → x |(f(y) - f(x))/(y - x)|< +∞” が成立。つまり、Bf内に開区間ありと)
ですから、P→Q(”Bf内に開区間あり”)です
2)
一方で、”Bfの補集合が、R中稠密”ですから、Bf内に(Bfのみの)開区間なし(必ずBfの補集合R-Bfがその開区間に交じります)
ですから、P→¬Qです
3)
P→QとP→¬Qとは両立しません。どちらかを捨てるしかありません(排中律)
P→¬Qは”R中稠密”から自明ですので、P→Qを捨てることになります。
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch