18/02/15 18:58:35.81 Ng4AGrJW.net
>>231
お前だって質問に答えないだろうがw
人には厳しいのね ぷ
249:132人目の素数さん
18/02/15 18:59:39.71 TzXrTrkr.net
>なにせ、私は、この板では証明を書かない主義です
と、教科書を読まない主義、勉強をしない主義のバカが申しております
250:132人目の素数さん
18/02/15 20:35:06.26 gCnkTTzV.net
>>232
ぷ
251:132人目の素数さん
18/02/15 20:48:23.16 gCnkTTzV.net
>>215
>きちんと、条件設定”補集合R-BfがR中稠密”を付加した上で、そういう関数fが存在しないというなら、
>それを筋道立てて、証明すべきであると。それをやらないと説得力なしです。
P->Q
が真である場合
A->¬Q
が真であっても(なくても)
P∧A->Q
も真ですよ
また
A->¬Q
が真である場合
P∧A->Q∧¬Q
も真となりますので
P∧Aは偽
ということです
ここで
P:R-Bfが可算個の疎な閉集合で覆える
Q:fがリプシッツ連続となる開区間が存在する
A:R-BfがRで稠密
を想定してください
252:132人目の素数さん
18/02/16 01:00:25.40 xXIgzvk8.net
>>215
>>あなたが定理を``間違っている''と主張する場合
>>R-Bfが稠密でかつ可算個の疎な閉集合で被覆できるfの例を作れなければ
>>説得力は皆無ですよ
>
>私の主張は逆で、
>定理1.7で、補集合R-BfがR中稠密な場合は、
>きちんと、条件設定”補集合R-BfがR中稠密”を付加した上で、そういう関数fが存在しないというなら、
>それを筋道立てて、証明すべきであると。それをやらないと説得力なしです。
背理法を理解していないことが納得がいかない元凶です
また
あなたの主張の1つは``件の定理は間違っている''というものですから
間違っていることを証明するか成立しない例を挙げるかその主張を取り下げるかしかありません
``間違っている''という主張を取り下げた上で``間違っていそうな気がする''程度であれば
数学的に間違ったことを主張しているということでの批判はされはしないでしょう
253:132人目の素数さん
18/02/16 01:17:30.91 eQJLjvN9.net
あなたの主張の1つは``時枝戦略は間違っている''というものですから
間違っていることを証明するか成立しない例を挙げるかその主張を取り下げるかしかありませんよ
254:132人目の素数さん
18/02/16 07:27:57.61 xXIgzvk8.net
>>236
``間違っていそうな気がする''
程度であってもバカにされることを気にするかも知れませんね
証明を読んで納得することが肝要ですよ
255:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 11:58:45.29 wmUyW91w.net
>>236-238
>あなたの主張の1つは``件の定理は間違っている''というものですから
>間違っていることを証明するか成立しない例を挙げるかその主張を取り下げるかしかありません
えらく根源的なレベルまで、話が戻っていますかね?
私の主張は、数学の理論というのは、定理:P→Q で、
定理が成立するというのは、P真→Q真が成り立っていて、命題PからQがきちんと導かれる(=証明がつけられる)
べし だと
そうして、定理の連鎖による数学の理論体系を構築する。定理:P→Q、定理:Q→R、・・・と続いて連鎖と理論体系を成すべし
その中に、「実は、P偽→Q偽で、命題自身は真なのですが・・」なんてのを、混ぜたら、みんなズッコケでしょう?
つづく
256:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 12:01:16.66 wmUyW91w.net
>>239 つづき
これを定理1.7に見るに(>>13より)
命題P中 「R-Bf が内点を持たない閉集合の高々可算和で被覆できる」を、普通に場合分けすると
(>>23より)
1)R中稠密でない場合、
2)R中稠密な場合
に、二分でき
1)の場合について、
命題P’1:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密でない、とする。」
2)の場合について、
命題P’2:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
となる
そこで
>>205より、「定理1.7が成り立つと、仮定の集合Bfもまた、ある開区間を含む
だから、定理1.7が成り立つと、補集合R-Bfが稠密ではないという結論になる(補集合R-Bfが稠密なら、Bfは開区間を含みえない)」
なので、命題P’2のい場合ついては、仮定P’2(稠密で開区間なし)と、 結論:ある開区間がリプシッツ連続 →この開区間は仮定のBfの条件を満たす
従って、仮定P’2と結論とが矛盾しているので、ここはきちんと場合分けをすべきだと
そして、「証明が正しいから、これで良いのだ」と仰るが、それはおかしい
繰り返すが、本来、定理の命題と証明は分離されるべきもので、例えば、定理が正しければ、元の証明以外の別証明もありうるわけだし
数学の定理の命題は、上記のように数学の理論体系の一部をなすべきものであるから、
命題の論理の連鎖がつながるように、最低限の体裁を整えないといけませんね
2)の場合について、
命題P’2:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
↓
結論:この場合は、fは空集合(存在しない)
という定理を立てるなら、それはまっとうな数学の定理と言える
257:しかし、 「結論:ある開区間がリプシッツ連続」 で、この場合は空集合で、条件が偽です。 「それで良い。条件が偽で命題は正しいし、証明が正しいから」 では、まずいと思いますよ 以上
258:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 12:05:22.34 wmUyW91w.net
>>237
時枝については、確率過程論や、ランダム現象の数理の中に、当てられない数列の例が、存在します
それが反例ですが、その理解が難しいんでしょうね
なお、ここらは、日本の伊藤清先生らの系譜で、日本数学の伝統の分野です
259:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 12:22:51.16 wmUyW91w.net
>>240 補足
系1.8については、別の理論で証明されています。それは既述の通りです。多分、ここは合意でしょう。
そして、背理法は系1.8の部分です。
問題は、定理1.7です。
ここは、背理法以前です。
定理1.7で、上記>>240 2)の場合について、
命題P’2:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
が、本当に空集合になるのかどうか? それは知りません
おそらく、空ではなく、反例として存在するのではないかと思っています
まあ、普通の連続・不連続で、R中の部分集合として連続がFσ、不連続がGδとして存在するの類似かな?と
つまり、「Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }」が連続に相当しFσ
補集合 R-Bf が、不連続に相当しGδだろうと
残念ながら、そういう理論の論文は見つかりませんでした
そして、これも残念ながら、リプシッツ連続や上記のBfと R-Bf とについて
「Fσ vs Gδ」理論を構築するような”かしこい頭”は、私にはありません(^^
どなたか、これに関する文献などあれば、ご紹介ください
「そんなこと簡単にできるよ」と、どなたか実行して頂ければ、さらに幸甚です(^^
以上
追伸
命題の仮定と結論レベルで矛盾している定理を、「証明しました」というのは、普通は「?」ですよ
260:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 15:04:53.67 wmUyW91w.net
>>218
おっちゃん、どうも、スレ主です。
ご苦労さまです
>有限回の推論に基づくことのみを適用して有限回の推論で矛盾を導いて
数学的帰納法や超限帰納法は、有限ですか無限ですか?
>>219
定理1.7は、背理法ではありませんよ
だから問題なんです
系1.8は、背理法です。
>>220
「完全に適用していない」とか、関係ないでしょ? 一部だけの使用でも矛盾が導ければ同じと考えます
以上
261:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 15:10:11.59 wmUyW91w.net
>>231
>>>131
>にはお答えいただけないようですね
なんども同じことを書いていますが
>>239-240 & >>242 をご参照ください
262:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 15:33:04.70 wmUyW91w.net
>>244 補足
(>>240より)
仮定P’2:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
↓
結論:この場合は、fは空集合(存在しない)
は、証明可能かもしれません。(定理1.7の証明で、「自動的に証明できている」という主張は無茶では?)
しかし
仮定P’2:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
↓
f はある開区間の上でリプシッツ連続である
↓
結論: f はある開区間(=リプシッツ連続な開区間)の上で ”lim sup y → x |(f(y) - f(x))/(y - x)|< +∞”である
が言える (つまり、リプシッツ連続→”lim sup y → x |(f(y) - f(x))/(y - x)|< +∞” が成立。つまり、Bf内に開区間ありと)
(>>205より)
ですから、繰り返しますが
仮定は、補集合がR中稠密で、Bfは開区間など持ち得ない
結論は、Bfは開区間を持つ
です
だから、仮定から結論は、導けない。
この証明は不可能でしょう
だから、
仮定:補集合がR中稠密で、Bfは開区間など持ち得ない
から出発して
結論(A):そのようなfは空集合(存在しない)
結論(B):そのようなfは存在し、反例になる
このように、結論(A)か結論(B)か、どちらかをきちんと証明すべきです
(繰り返すが、仮定:補集合がR中稠密で、Bfは開区間など持ち得ない だから、結論が、Bf内に開区間あり は、まずいよと)
以上
263:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 15:46:35.35 wmUyW91w.net
>>235
>P->Q
>が真である場合
1)
P:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」(>>245)
Q:「f はある開区間の上でリプシッツ連続である」
↓
f はある開区間(=リプシッツ連続な開区間)の上で ”lim sup y → x |(f(y) - f(x))/(y - x)|< +∞”である
が言える (つまり、リプシッツ連続→”lim sup y → x |(f(y) - f(x))/(y - x)|< +∞” が成立。つまり、Bf内に開区間ありと)
ですから、P→Q(”Bf内に開区間あり”)です
2)
一方で、”Bfの補集合が、R中稠密”ですから、Bf内に(Bfのみの)開区間なし(必ずBfの補集合R-Bfがその開区間に交じります)
ですから、P→¬Qです
3)
P→QとP→¬Qとは両立しません。どちらかを捨てるしかありません(排中律)
P→¬Qは”R中稠密”から自明ですので、P→Qを捨てることになります。
以上
264:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 15:49:31.45 wmUyW91w.net
>>230
引用
「この定理は
P:R-Bfが可算個の疎な閉集合で覆える
Q:fがリプシッツ連続となる開区間が存在する
というものであり
fにリプシッツ連続となる開区間が存在するならR-BfがRで稠密にならないのは自明ですので
''R-Bfが可算個の疎な閉集合で覆える"∧"R-BfがRで稠密"->矛盾
となる訳です
件の証明を書いた人が再三指摘しているあなたの思考法の難点は
背理法を理解していないことにあるようですね」
(引用終わり)
ここは、>>246ご参照
”P→QとP→¬Qとは両立しません。どちらかを捨てるしかありません(排中律)
P→¬Qは”R中稠密”から自明に成立ですので、P→Qを捨てることになります。”ってことです
265:背理法とは、明白に異なっています 以上
266:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/16 16:57:22.84 wmUyW91w.net
>>214 補足
>まあ、分かりやすい証明を考えますよ(^^
<経過報告>
(>>204より)
1)定理1.7の条件;lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ ( lim supが有限)
↓↑
2)ディニ微分 (4つのDini微分が有限)
↓↑
3)定理1.7の結論;リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)(k 有限)
まあ、命題3つとも全部”有限からみ”で、特に”2)ディニ微分 (4つのDini微分が有限)”を中心にして、1)2)3)が全て同値が言えるのえではというのがそもそもの発想です
1)と2)が同値であることは、>>200 テキスト Fundamentals of Real Analysis のP220 で終わっていると思う
3)が見かけ一番強い条件で、3)→1)を見るのは易しい(>>205に書いた)
だから、2)→3)又は1)→3)が言えれば良い
仮定は1)の”lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ ( lim supが有限)”の開区間が存在するだから
この開区間が存在する仮定のもとで、→(この区間内で)”リプシッツ連続”が言えれば良い
まあ、この程度の話だから、すでにどこかのテキストに同じ命題か類似命題があるのでは・・、その方が説得力もあるので探しているところ
無ければ、それこそ背理法を使って
”lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ ( lim supが有限)”の開区間が存在するにも拘わらず
この開区間内に、”リプシッツ不連続”な点(k 無限大発散)
として、矛盾を導く(例えば、”リプシッツ不連続”(k 無限大発散)な点では、4つのDini微分のどれかが無限大になる)
方針で、証明することになるだろう
(まあ、なにかテキストを見つけて読んだ方が勉強になるので、いま模索&思案中です・・(^^ )
以上
267:132人目の素数さん
18/02/16 17:33:03.22 oZfMkl2p.net
>>240
>そこで
>>>205より、「定理1.7が成り立つと、仮定の集合Bfもまた、ある開区間を含む
> だから、定理1.7が成り立つと、補集合R-Bfが稠密ではないという結論になる(補集合R-Bfが稠密なら、Bfは開区間を含みえない)」
>なので、命題P’2のい場合ついては、仮定P’2(稠密で開区間なし)と、
>結論:ある開区間がリプシッツ連続 →この開区間は仮定のBfの条件を満たす
>従って、仮定P’2と結論とが矛盾しているので、ここはきちんと場合分けをすべきだと
同じ屁理屈を定理Cに適用すると、次のようになる。
―――――――――――――――――――
定理Cが成り立つと、f が原点で微分可能なら、f は原点で連続である。だから、
定理Cが成り立つと、f は原点で不連続になりえないという結論になる。なので、
(1) f が原点で連続である場合 (2) f が原点で不連続である場合
と場合分けしたときの (2) の場合については、仮定(2)と結論とが
矛盾しているので、ここはきちんと場合分けをすべきだと。
―――――――――――――――――――
↑このように、お前は定理Cについて「(1),(2)のケースに場合分けしなければならない」と
ほざいているのである。
268:132人目の素数さん
18/02/16 17:34:22.38 oZfMkl2p.net
>>240
>2)の場合について、
>命題P’2:「R-Bf:RにおけるBfの補集合で、ベールの第一類集合で、R中稠密である、とする。」
> ↓
>結論:この場合は、fは空集合(存在しない)
>という定理を立てるなら、それはまっとうな数学の定理と言える
>しかし、
>「結論:ある開区間がリプシッツ連続」
>で、この場合は空集合で、条件が偽です。
>「それで良い。条件が偽で命題は正しいし、証明が正しいから」
>では、まずいと思いますよ
同じ屁理屈を定理Cに適用すると、次のようになる。
――――――――――――――――
「(2) f は原点で不連続」の場合について、
命題:f は原点で微分可能で、fは原点で不連続とする。
↓
結論:この場合は、f は空集合(存在しない)
という定理を立てるなら、それはまっとうな数学の定理と言える
しかし、
「結論:f は原点で連続」
で、この場合は空集合で、条件が偽です。
「それで良い。条件が偽で命題は正しいし、証明が正しいから」
では、まずいと思いますよ。
――――――――――――――――
↑このように、お前は定理Cについて「定理Cの記述のままでは まずいと思いますよ」と
ほざいているのである。
269:132人目の素数さん
18/02/16 17:35:23.51 oZfMkl2p.net
しかし、スレ主は定理Cに対しては次のような屁理屈を繰り出すのだった。
―――――――――――――――
定理Cの場合は、「(2) f が原点で不連続」という場合分けは存在しない。
なぜなら、f が微分可能なら f は原点で連続になるからだ。
なぜそうなるかって?定理Cにそう書いてあるじゃないか。
―――――――――――――――
だったら、同じ屁理屈を定理1.7にも適用すれば、次のようになる。
――――――――――――――――
定理1.7 の場合は、「 R-B_f が R の中で稠密」という場合分けは存在しない。
なぜなら、R-B_f が第一類集合なら、f はある開区間の上でリプシッツ連続だからだ。
なぜそうなるかって?定理1.7 にそう書いてあるじゃないか。
――――――――――――――――
結局、スレ主とかいうゴミクズの屁理屈は、どちらに転んでも自爆に終わるのである。
270:132人目の素数さん
18/02/16 17:46:51.60 oZfMkl2p.net
>>245
>ですから、繰り返しますが
>仮定は、補集合がR中稠密で、Bfは開区間など持ち得ない
>結論は、Bfは開区間を持つ
>です
>
>だから、仮定から結論は、導けない。
>この証明は不可能でしょう
>>142-143で論破済み。示すべきは
・「P → Q 」が真であることを証明すること
なのであって、「 P という仮定のもとで絶対に Q を導かなければ証明にならない 」
というわけではない。P が偽であることが示せたなら、その時点で
「P → Q 」は真だと確定するので、もはや Q に言及する必要は
どこにもなく、証明は終わっている。
どうしても Q を導出したければ、>>143に書いたように、
「矛盾した命題からは何でも導出できるので~」という論法を使って
「 Q 」を導出すればよい。今回の場合は、仮定が矛盾していることを導いた後、
―――――――――――――
矛盾した命題からは任意の命題を導出してよいので、
特に「Bfは開区間を持つ」という命題を導出してよい。
よって、Bfは開区間を持つ。
―――――――――――――
と書けばよい。これできちんと結論が導出できている。
いずれにしても、お前がそこで書いていることは>>142-143で論破済み。
271:132人目の素数さん
18/02/16 17:48:29.17 oZfMkl2p.net
>>248
>だから、2)→3)又は1)→3)が言えれば良い
言えないよ。もしそこが言えたら、
(★) (a,b)⊂B_f なる開区間が存在するなら、f は (a,b) 全体でリプシッツ連続である
ということが示せることになってしまうが、既に見たように
f(x)=0 (x=0), x^{3/2}sin(1/x) (x≠0)
が
272:(★)の反例になっている。この例では、(-1,1)⊂B_f が成り立つにも関わらず、 f は (-1,1) 上ではリプシッツ連続になってない。 つまり、お前の方針は自動的に失敗する。
273:132人目の素数さん
18/02/16 17:52:59.42 oZfMkl2p.net
>>242
>つまり、「Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }」が連続に相当しFσ
>補集合 R-Bf が、不連続に相当しGδだろうと
バカだな。一般に、次の 定理F が成り立つことに注意せよ。
―――――――――――――――
定理F:
A ⊂ R は Fσ集合とする。このとき、もし R-A が第一類集合ならば、
(a,b)⊂A を満たす開区間 (a,b) が存在する。
―――――――――――――――
よって、もし Bf が Fσ 集合ならば、R-B_f が第一類集合のときには
(a,b)⊂B_f なる開区間が必ず取れることが即座に確定する。
このことは、定理1.7を経由することで既に確定しているが、
上記の 定理F により、さらに直接的に確定するのである。
つまり、Bf が Fσ 集合ならば、R-B_f が第一類集合のときに
「 R-B_f は R の中で稠密 」
なんてのは最初から起こりようが無いのである。
スレ主の屁理屈によれば、"R の中で稠密" なんていう場合分けは存在しないのである。
つまり、お前が「 Bf は Fσ 集合であろう」と予想するなら、お前は自分自身の手で
墓穴を掘っていることになるのだ。
ちなみに、Bf は実際に Fσ 集合である。例の pdf のままではそのことは証明できないが、
手元にはその証明がある。そして、そのことを使っても定理1.7が証明できる。
なんなら、うpろだに上げてもよい。
274:132人目の素数さん
18/02/16 19:29:31.18 eQJLjvN9.net
>>241
>時枝については、確率過程論や、ランダム現象の数理の中に、当てられない数列の例が、存在します
アホ丸出しw
275:DJ学術
18/02/16 20:00:20.87 yN3n4O8g.net
数学用語はリズムが合わないな。脚韻とかそっちの文学世界の方が楽しい。
276:132人目の素数さん
18/02/16 22:24:40.84 wpVIJgKd.net
時枝氏の議論はもう置いておこう。なんの話しか分からなくなる。
スレ主も「時枝」を議論したいなら専用スレ作ることを提案する。貴重な議論が「時枝」ですぐ乱れる。数学ネタをココから少々拾う身としては辛い。
専用スレ作っても意味無いかも知れぬが。
277:132人目の素数さん
18/02/16 23:05:50.96 ctIhm5VI.net
>>257
> 貴重な議論が「時枝」ですぐ乱れる。
貴重ですかねコレ
あまりに馬鹿馬鹿しい議論だと思いますが
証明読めば分かるのに難癖つけまくってるだけですよね
懇切丁寧に説明しても一向に分からないスレ主
時枝も同じですよ
問題を読み違えている人とか、まったく分かってない人とか
確率0とかねw
読み違えを指摘されても全く答えない ぷ氏
278:132人目の素数さん
18/02/17 07:32:25.44 oEbC5FQb.net
>時枝については、確率過程論や、ランダム現象の数理の中に、当てられない数列の例が、存在します
そこまで言うなら、数列の実例を挙げて当てられないことを証明しては?
時枝解法のどこが破綻するのか具体的に示してね
279:132人目の素数さん
18/02/17 09:16:59.89 07PyDvE/.net
おっちゃんです。
>>243
>>有限回の推論に基づくことのみを適用して有限回の推論で矛盾を導いて
>
>数学的帰納法や超限帰納法は、有限ですか無限ですか?
これも有限回の推論になる。
280:132人目の素数さん
18/02/17 09:19:22.23 07PyDvE/.net
>>243
>>>219
>定理1.7は、背理法ではありませんよ
>だから問題なんです
>>218-219の補足だが、命題 P→Q を示すにあたり、背理法で
命題 P∧ ¬Q を偽と仮定したことは、Pであって かつ Qでない ことを仮定したことになる。
これは定理1.7でいうと、 「R-Bf が内点を持たない閉集合の高々可算和で被覆出来」て
かつ 「f :R→R は如何なる開区間の上でもリプシッツ連続ではない」ことを仮定したことになる。
つまり、「R-Bf が内点を持たない閉集合の高々可算和で被覆出来」て かつ
「f :R→R は如何なる開区間の上でも微分不可能 または fが或る開区間上微分可能だとしても導関数 f' は不連続である」
ことを仮定したことになる。これは、スレ主に従うと、そのままスレ主の主張に当てはまることになる。
そして、>>218-219の>>218で書いたことの一部と似たような内容になるが、定理1.7を偽として真の命題である系1.8を導く証明が正しいとする。
281:そうすると出だしの定理1.7が偽だから、定理1.7とは違う他の命題 P' で任意に置き換えて、命題 P' から系1.8が導けることになる。 だが、このようなことはあり得ない。だから、定理1.7を偽として真の命題である系1.8を導く証明は正しくない。 だから、定理1.7を真として真の命題である系1.8を導く証明をすることになる。 それ故、このように、スレ主の主張に対して>>218-219の内容に似たことが適用されることになる。
282:132人目の素数さん
18/02/17 09:26:32.56 07PyDvE/.net
>>243
>>>220
>「完全に適用していない」とか、関係ないでしょ? 一部だけの使用でも矛盾が導ければ同じと考えます
一部の使用だけだと、使った部分のみを仮定とする命題を示したことになる。
理由はやはり>>218-219の>>218の一部の内容に似たことが適用されることになる。
>>261の「>>218で書いたことの一部」やこのレスでいう「>>218の一部」とは、具体的には
>これを行うにあたり、Qの否定 ¬Q からいえることだけを適用して有限回の推論で矛盾を導けて P→Q を導けるとする。
>そうすると、P、Qは両方共に真か偽のどちらか一方で、示すべき命題 P→Q は元々真だから、
>仮定のPを任意の(Pとは異なる他の)仮定 P' で置き換えて P'→Q を背理法で示せることになる。
>つまり、一般論として、結論Qが与えられた上で、任意の仮定 P' に対して、命題 P'→Q を背理法で示せることがいえる。
>だが、これはあり得ない。
の部分のこと。
283:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/17 13:36:41.09 S4GQoKob.net
>>248 準備
<リプシッツ連続まとめ>
1)いろいろ調べているが、文献が多いのは、圧倒的に”リプシッツ連続”に関すること
2)次が、ディニ微分。ディニ微分に関する和文の文献は数えるほどだ。英文はかなりあるが、本格的な論文か、出版された実解析の教科書がほとんどだな
3)”定理1.7の条件;lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ ( lim supが有限)”は、あまりなさそう。まあ、名前もついていないしね
4)で、”リプシッツ連続”が下記だが、「連続的微分可能 ⊆ リプシッツ連続 ⊆ α-ヘルダー連続 (0 < α <= 1) ⊆ 一様連続 ⊆ 連続函数」で
5)上記1)~3)は、どれも、「連続的微分可能以上、α-ヘルダー連続 (0 < α <= 1)以下」ってことなので、実関数の同じような性質(傾きがある有限値)を規定しているってことですな
URLリンク(ja.wikipedia.org)
リプシッツ連続
(抜粋)
直観的には、リプシッツ連続函数は変化の速さが制限される。即ち、適当な有限値の実数が存在して、その函数のグラフ上の任意の二点を結ぶ直線の傾きの絶対値はその実数を超えない。この上界をその函数の「リプシッツ定数」
(あるいは一様連続度(英語版))
URLリンク(en.wikipedia.org)
と呼ぶ。例えば一階微分が有界な任意の函数はリプシッツである[1]。
微分方程式論において、リプシッツ連続性は初期値問題の解の存在と一意性を保証するピカール-リンデレフの定理(英語版)
URLリンク(en.wikipedia.org)
の中心的な条件である。リプシッツ連続性の特別な場合で、縮小性はバナッハの不動点定理において用いられる。
実数直線の有界閉集合上で定義される函数に関して、以下のような包含関係の鎖が知られている[2]:
連続的微分可能 ⊆ リプシッツ連続 ⊆ α-ヘルダー連続 (0 < α <= 1) ⊆ 一様連続 ⊆ 連続函数.
また、
リプシッツ連続 ⊆ 絶対連続 ⊆ 有界変動 ⊆ 殆ど至る所微分可能
も成り立つ。
つづく
284:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/17 13:37:13.79 S4GQoKob.net
>>263 つづき
例 (主にリプシッツ連続でない)
連続だが(大域的)リプシッツ連続でない
・閉区間 [0,?1] 上定義された函数 f(x) = √x はリプシッツ連続でない。この函数は x → 0 の極限で、導函数が無限大に発散するから、いくらでも傾きが急になる。にも拘らずこの函数は一様連続[3]であり、かつ α <= 1/2 に対して C0,α-級ヘルダー連続である。
可微分だが(大域)リプシッツ連続でない
・函数 f(x) = x^3/2sin(1/x) (x ≠ 0) かつ f(0) = 0 を閉区間 [0,?1] へ制限したものは、コンパクト集合上微分可能だが局所リプシッツでない函数の例を与える。実際、その導函数は有界でない。
解析的だが(大域)リプシッツでない
・指数函数は x → ∞ でいくらでも傾きがおおきくなるから、大域リプシッツ函数とはならないが、それにもかかわらず解析函数になる。
・実数全体で定義された函数 f(x) = x^2 はリプシッツでない(x → ∞ でいくらでも傾きが大きくなる)。しかしこれは局所リプシッツである。
つづく
285:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/17 13:38:02.20 S4GQoKob.net
>>264 つづき
性質
・リプシッツ函数 g: R → R は絶対連続であり、したがって殆ど至る所微分可能(つまりルベーグ測度 0 の集合の外側の任意の点で微分可能)である。その導函数は絶対値がリプシッツ定数を本質的上界として本質的有界(英語版)である。また、a < b に対して、差分 g(b) ? g(a) は導函数 g' の区間 [a,?b] 上の積分に等しい。
・逆に、f: I → R が絶対連続、従って殆ど至る所微分可能であるとし、|f'(x)| ? K (a.a. x ∈ I) を満たすならば、f はリプシッツ定数が高々 K のリプシッツ連続である。
・共通のリプシッツ定数を持つリプシッツ連続函数の族 fα に対し、函数 supα ?fα および infα?fα は、それが少なくとも一点において有限な値をとるならば、また同じリプシッツ定数を持つリプシッツ連続函数となる。
(引用終り)
つづく
286:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/17 13:38:25.49 S4GQoKob.net
>>265 つづき
URLリンク(ja.wikipedia.org)
アルツェラ?アスコリの定理
(引用終り)
つづく
287:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/17 13:38:54.97 S4GQoKob.net
>>266 つづき
URLリンク(oshiete.goo.ne.jp)
微分方程式の一意性 質問者:foriver7質問日時:2010/07/27
(抜粋)
No.3 回答者: 178-tall 回答日時:2010/07/27 13:50
リプシッツ不連続でよく出される例みたいですね。
↓ 参考URL
>3.1.3 解の一意性
URLリンク(www.math.nagoya-u.ac.jp)
(引用終り)
(参考)
URLリンク(www.math.nagoya-u.ac.jp)
内藤 久資(ないとう ひさし) 名古屋大学 大学院多元数理科学研究科・理学部数理学科
URLリンク(www.math.nagoya-u.ac.jp)
2002年度前期「微分方程式」 (理学部数理学科3年)
URLリンク(www.math.nagoya-u.ac.jp)
解の一意性とリプシッツ連続性 単独1階常微分方程式 (5) 6回目講義レジュメ 微分方程式 2002
(引用終り)
以上
288:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/17 13:41:32.61 S4GQoKob.net
>>260-262
おっちゃん、どうも、スレ主です。
ご苦労さまです!(^^
289:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/17 13:43:02.97 S4GQoKob.net
今日は、ダブル羽生でいそがしい日だな
藤井聡太-羽生戦は、藤井聡太勝ちで、朝日杯決勝進出だ
290:132人目の素数さん
18/02/17 14:03:23.32 axXh/K/2.net
>>269
書くなよ
291:132人目の素数さん
18/02/17 18:10:48.93 piKfhfZj.net
正直なところ数学は独学のほうが身につく
292:
18/02/17 18:13:37.71 9jRO7d0E.net
>>271
その言葉、日々の支えとさせてください
293:132人目の素数さん
18/02/18 00:36:42.63 v0+yxXMC.net
結局口先だけで何一つ証明できないスレ主
294:132人目の素数さん
18/02/18 09:11:32.87 WqE33pZi.net
URLリンク(twitter.com)
295:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 10:40:59.11 Mo7Jg5gC.net
いろいろ忙しいので、まずは大きなところから
296:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 10:42:03.62
297: ID:Mo7Jg5gC.net
298:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 10:46:58.09 Mo7Jg5gC.net
>>276 つづき
1)
要は、第一類集合 → 疎集合 → nowhere dense set → 補集合が開区間を含む(例えば下記渕野「ポーランドとチェコへの数学の旅」”全疎”定義1b)ご参照)ってこと
で、日本語では”疎集合”の用法が混乱していて、使い方が”meagre set” と ”nowhere dense”と、二つの用法あるという(下記 wikipedia 疎集合 注釈 [* 1] ご参照)
そして、同じくwikipedia 疎集合より
「R の部分集合としての、有理数からなる集合は、その「内部の閉包が空である」という性質を持つが、疎集合ではなく、実際 R において稠密である。」とあります
wikipedia 疎集合より
「実数の全体 R に通常の位相を考えたものはベール空間であり、したがって自分自身において第二類である。有理数の全体 Q は R において第一類であり、無理数の全体 P は R において第二類である。」とあります
つまり、第一類集合は、”meagre set”です。なお、ベール空間wikipedia 歴史的定義ご参照
2)
定理1.7”R-Bf が内点を持たない閉集合の高々可算和で被覆できるならば”(>>13)だった。
「高々可算和」を場合分けすると(^^
1.有限
2.可算無限だが稠密でない(例 整数)
3.可算無限で稠密(例 有理数、代数的数)
の3つ分けられる
1.と2.とが、”nowhere dense”で、渕野流”全疎”、wikipedia流 ”疎集合”
3.が、ベール空間 歴史的定義の”第一類 (first category) または痩せている (meagre) ”であって、”nowhere dense”ではない。
(上記のように、有理数の全体 Q は R において第一類であり、補集合の無理数のみの開区間はとれない)
だから、定理F不成立と思うよ
以上
つづく
299:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 10:47:49.78 Mo7Jg5gC.net
>>277 つづき
(参考)
URLリンク(fuchino.ddo.jp)
冬の旅 ? ポーランドとチェコへの数学の旅11 渕野昌 201712
(抜粋)
(以下の文章は,『数学セミナー』2016 年6 月号に掲載された同名の記事の拡張版です.)
P23
ポーランド学派の研究での一つの中心主題は実
数全体R の構造の研究であった. そして,彼らの研究では,測度とカテゴリーに関する
考察が重要な役割を果たしていた. (ただし,ここで言うカテゴリーとは,カテゴリー理
論のそれではなく,第1種(first category) および第2種(second category) の集合に関す
る議論のことである.) 測度とカテゴリーは,多くの場合,大変似た振舞をすることが知
られていて,連続体仮説,あるいは,もう少し一般的に,例えば,マルティンの公理の下
では,実際に,強い形の双対性が測度とカテゴリーの間に成り立っていることが知られて
いる(定理A.3 ).また,フビニの定理とウラム- クラトウスキーの定理,コルモゴロフの
0 - 1則とそれに相当するベールの性質を持つ集合に関する定理など,連続体仮説などの
仮定なしに集合論の枠組みの中で既に証明できるもので,測度とカテゴリーに関して対に
なっている定理が多く見られる.これらのことは,例えば[3] に詳しい.
定義1
b) R の部分集合X は,任意の実数上の区間I に対し,I \ X が空でない開区間を含むと
き,全疎であるという.R の部分集合X は,全疎集合の可算和として表されるとき,
第1類の集合と呼ばれる.
(引用終り)
つづく
300:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 10:48:25.56 Mo7Jg5gC.net
>>278 つづき
URLリンク(ja.wikipedia.org)
疎集合
(抜粋)
数学の分野における、位相空間内の疎集合(そしゅうごう、英語: nowhere dense set)[* 1]とは、閉包の内部が空であるような集合のことである。
この言葉の順番が大事で、例えば、R の部分集合としての、有理数からなる集合は、その「内部の閉包が空である」という性質を持つが、疎集合ではなく、実際 R において稠密である。
疎集合のすべての部分集合はまた疎集合であり、有限個の疎集合の合併もまた疎集合である。すなわち、疎集合は集合のイデアル(無視可能な集合(英語版)に関する適正な概念)を形成する。
可算個の疎集合の合併は、しかし、必ずしも疎集合ではない(したがって、疎集合は必ずしもσ-イデアル(英語版)を形成しない)。そのような合併はやせた集合(英語版)[* 1]あるいは第1類集合と呼ばれる。この概念は、ベールの範疇定理を考える上で重要である。
開と閉
・ある集合が疎集合であることと、その閉包が疎集合であることは必要十分である。
・閉疎集合の補集合は稠密な開集合であり、したがって、疎集合の補集合は稠密な内部を持つ集合である。
・開集合の境界は、閉疎集合である。
・すべての閉疎集合は、ある開集合の境界である。
注釈
[* 1]^ a b 「疎集合」という名称を meagre set のために用い、nowhere dense には「至る所疎」や「至る所非稠密」などの訳語を充てる流儀もある。例えば 渕野昌 (2002) (PDF), 実数の集合論の基礎の基礎
URLリンク(math.cs.kitami-it.ac.jp)
(引用終り)
つづく
301:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 10:49:15.02 Mo7Jg5gC.net
>>279 つづき
URLリンク(ja.wikipedia.org)
ベール空間
(抜粋)
歴史的定義
詳細は「第一類集合」を参照
ベールのオリジナルの定義では、範疇の概念が以下のように定義された。
位相空間 X の部分集合が、
・X において疎あるいは至る所疎 (nowhere dense) であるとは、その閉包の内部が空であることを言う。
・X において第一類 (first category) または痩せている (meagre) とは、それが可算個の疎集合の和になっていることを言う。
・X において第二類 (second category) または痩せていない (nonmeagre) とは、それが X において第一類でないことを言う。
これらの言葉でベール空間の定義を述べると次のようになる:「位相空間 X がベール空間となるのは、任意の空でない開集合が X において第二類であるときである」。この定義は先述の現代的定義と同値である。
X の部分集合 A が残留的 (residual, comeagre) であるとは、その補集合 X \ A が痩せていることを言う。位相空間 X がベール空間であるための必要十分条件は、X の任意の残留的部分空間が稠密になることである。
例
・実数の全体 R に通常の位相を考えたものはベール空間であり、したがって自分自身において第二類である。有理数の全体 Q は R において第一類であり、無理数の全体 P は R において第二類である。
・有理数の全体 Q に R からくる通常の位相を入れた空間はベール空間でない。これは Q が可算個ある各点 q に対応する一元集合 {q}(これは内点を持たない閉集合になっている)の合併として書けることによる。
ベールの範疇定理
詳細は「ベールの範疇定理」URLリンク(ja.wikipedia.org) を参照
(引用終り)
以上
追記
「無理数の全体 P」とあるね(^^
302:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 10:49:48.00 Mo7Jg5gC.net
>>253
(引用開始)
「>>248
>だから、2)→3)又は1)→3)が言えれば良い
言えないよ。もしそこが言えたら、
(★) (a,b)⊂B_f なる開区間が存在するなら、f は (a,b) 全体でリプシッツ連続である
ということが示せることになってしまうが、既に見たように
f(x)=0 (x=0), x^{3/2}sin(1/x) (x≠0)
が(★)の反例になっている。この例では、(-1,1)⊂B_f が成り立つにも関わらず、
f は (-1,1) 上ではリプシッツ連続になってない。
つまり、お前の方針は自動的に失敗する。」
(引用終り)
えーと
(>>13)
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }
(引用終り)
いいかな
1)Bfの条件は、下記の4つの Dini微分 (D^+ g)(c),(D + g)(c),(D^- g)(c),(D - g)(c)が有限値で収まることを意味している。(下記a))
2)ディニ微分は、もし f が t において微分可能ならば、その t における各ディニ微分は通常の意味での微分に等しい。(下記b))
3)函数 f(x) = x^3/2sin(1/x) (x ≠ 0) かつ f(0) = 0 を閉区間 [0,1] へ制限したものは、コンパクト集合上微分可能だが局所リプシッツでない函数の例を与える。実際、その導函数は有界でない。(下記c))
4)従って、この例は、lim sup y→x |(f(y) - f(x))/(y - x)|も、有界でない
5)要するに、 lim sup y→x |(f(y) - f(x))/(y - x)|< +∞と、リプシッツ連続(=有限なリプシッツ定数を持つ)は、同じことを言っていると思うよ
つづく
303:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 10:50:25.47 Mo7Jg5gC.net
>>281 つづき
a)
(>>200)
「lim sup y→x |(f(y) - f(x))/(y - x)|< +∞」は、
下記の4つの Dini微分 (D^+ g)(c),(D + g)(c),(D^- g)(c),(D - g)(c)が
有限値で収まることを意味している。
URLリンク(www.amazon.co.jp)
URLリンク(books.google.co.jp)
Fundamentals of Real Analysis 著者: Sterling K. Berberian 出版社: Springer; Softcover reprint of the original 1st ed. 1999版 (1998/11/1)
P220のパラグラフ5.3.6に4つの Dini微分 (D^+ g)(c),(D + g)(c),(D^- g)(c),(D - g)(c)
と、lim sup, lim inf との関係が載っている
(引用終り)
b)
URLリンク(ja.wikipedia.org)
ディニ微分
(抜粋)
注意
もし f が t において微分可能ならば、その t における各ディニ微分は通常の意味での微分に等しい。
(引用終り)
c)
URLリンク(ja.wikipedia.org)
リプシッツ連続
(抜粋)
例
可微分だが(大域)リプシッツ連続でない
・函数 f(x) = x^3/2sin(1/x) (x ≠ 0) かつ f(0) = 0 を閉区間 [0,1] へ制限したものは、コンパクト集合上微分可能だが局所リプシッツでない函数の例を与える。実際、その導函数は有界でない。
(引用終り)
以上
304:132人目の素数さん
18/02/18 11:02:20.61 +IRfF0OB.net
書き込みテスト
305:132人目の素数さん
18/02/18 11:04:32.44 +IRfF0OB.net
>>277
>だから、定理F不成立と思うよ
定理F:
A ⊂ R は Fσ集合とする。このとき、もし R-A が第一類集合ならば、
(a,b)⊂A を満たす開区間 (a,b) が存在する。
証明:
STEP1:
A は Fσ 集合だから、高々可算無限個の閉集合 A_k が存在して A_f = ∪_k A_k と書ける。
一方で、R-A は第一類集合だから、高々可算無限個の、内点を持たない閉集合 F_k が存在して
R-E_f ⊂ ∪_k F_k と書ける。結局、R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) ということになる。
続く
306:132人目の素数さん
18/02/18 11:05:30.39 +IRfF0OB.net
続き
STEP2:
A_k, F_k はどれも閉集合だから、これと R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) から、
ベールのカテゴリ定理が使えて、ある A_k もしくはある F_k は内点を持つ。
F_k は内点を持たないのだから、ある A_k が内点を持つしかない。
そのような A_k に対して、(a,b)⊂A_k なる開区間が取れるので、
A = ∪_k A_k に注意して、(a,b) ⊂ A となる。従って、定理F が成り立つ。
上記の証明により、定理F は確実に正しい。
掲示板だと読みにくいとか文句をつけず、この程度の証明は今すぐ読んで理解してくれ。
307:132人目の素数さん
18/02/18 11:15:46.22 +IRfF0OB.net
補足:
Fσ集合の補集合はGδ集合であり、逆も然りであるから、定理Fは次のようにも書ける。
定理F1:
A ⊂ R は、R-A がGδ集合とする。このとき、もし R-A が第一類集合ならば、
(a,b)⊂A を満たす開区間 (a,b) が存在する。
実は、より強く次の定理も証明できる。
定理F2:
A ⊂ R は、R-A がGδ集合とする。このとき、もし R-A が第一類集合ならば、
R-A は nowhere dense である。
ここまで来ると、「 R-A 」を1つの塊で1文字にした方がキレイなので、そのように書くと、次のようになる。
定理F3:
A ⊂ R は、A がGδ集合とする。このとき、もし A が第一類集合ならば、A は nowhere dense である。
このことに関しては、"Gδ set of first category" で検索すると、
1件だけだが上記の 定理F3 を使っていると思しき pdf が見つかる。
URLリンク(fm.math.uni.lodz.pl)
> Observe that ∩[m=1~∞] ∪[n≧m] A_n as Gδ set of first category is
> easily seen to be nowhere dense.
このことからも、定理F, F1,F2,F3 は全て正しいと分かる。
308:132人目の素数さん
18/02/18 11:18:47.13 +IRfF0OB.net
>>281
>4)従って、この例は、lim sup y→x |(f(y) - f(x))/(y - x)|も、有界でない
>5)要するに、 lim sup y→x |(f(y) - f(x))/(y - x)|< +∞と、
>リプシッツ連続(=有限なリプシッツ定数を持つ)は、同じことを言っていると思うよ
間違っている。A_f(x)<+∞ という条件は、あくまでも
「その点 x において Af(x) は有限値である」
ということを言っているに過ぎない。一方で、お前が言っている「有界でない」とは、
「ある開区間 (a,b) を取ったときに、max_{x∈(a,b)} Af(x) もしくは sup_{x∈(a,b)} Af(x) が有限値に収まらない」
ということである。明らかに、両者は全く意味が違う。そして、お前は両者を混同している。
f(x)=0 (x=0), x^{3/2}sin(1/x) (x≠0)
という関数の場合、各点 x で Af(x) は有限値である。実際、x≠0 のときは、
Af(x) は x ごとに明らかに有限値である。また、x=0 のときは
Af(0)=0
であることが計算できる。従って、Af(x) は x=0 のときも やはり有限値である。
しかし、max_{x∈(-1,1)} Af(x) や sup_{x∈(-1,1)} Af(x) は有限値では存在しない。
309:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 11:22:13.15 Mo7Jg5gC.net
>>254
>お前が「 Bf は Fσ 集合であろう」と予想するなら、お前は自分自身の手で
>墓穴を掘っていることになるのだ。
>ちなみに、Bf は実際に Fσ 集合である。
下記、Gδ集合wikipediaで
”実数直線の任意の Gδ-
310:部分集合 A に対し、適当な函数 f: R → R が存在して、f は A に属する点のみにおいて連続となるようにすることができる。 このことから、無理数全体の成す集合が連続点集合であるような函数は存在する(トマエの函数(英語版)などを参照)が、有理数の上でのみ連続な函数というのは構成不可能であることが帰結される。” とあるでしょ? 開集合が取れる? 無理だろ ここ f は A に属する点のみにおいて連続となるようにすることができる。 ↓ f は A に属する点のみにおいてリプシッツ連続となるようにすることができる。 にできるかどうかだ なお、また、”基本的な性質 Gδ-集合の補集合はFσ-集合である。”も指摘しておく なので墓穴でもなんでもないだろ つづく
311:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 11:23:13.81 Mo7Jg5gC.net
>>288 つづき
URLリンク(ja.wikipedia.org)
Gδ集合
(抜粋)
数学の一分野、位相空間論における Gδ-集合あるいは内極限集合 (inner limiting set) とは、位相空間の部分集合で開集合の可算交叉となっているものを言う。
由来については、G というのが開集合を意味するドイツ語の Gebiet から、δ というのが交わりを意味するドイツ語の Durchschnitt からそれぞれとられたものである。
Gδ-集合(およびその双対であるFσ-集合)は、ボレル階層(英語版)において二階 (second level) の集合であり、より正確には Gδ-集合の全体はちょうど Π^0_2-階集合である。
例と反例
・任意の開集合は明らかに Gδ-集合である。
・無理数の全体 P は実数直線 R の Gδ-集合である。実際 P は、q が任意の有理数を亙るときの一点集合 {q} の R における補集合すべての交わりとして表せる。
・有理数の全体 Q は実数直線 R の Gδ-集合ではない。
実際、Q が開集合列 An の交わりに書けるとすると、各 An は(Q が R において稠密ゆえ)何れも R において稠密でなければならないが、上でやったように無理数全体の集合 P は稠密開集合の可算交叉として書けるから、P と Q との交わりをとれば R の稠密開集合の可算交叉が空集合となるものが存在することとなり、ベールの範疇定理に反する。
つづく
312:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 11:24:47.42 Mo7Jg5gC.net
>>289 つづき
性質
距離空間(および位相空間)における Gδ-集合の概念は、ベールの範疇定理と同様に距離空間の完備性の概念と強く関係する。このことは、マズルキェヴィチの定理として述べられる。
定理 (Mazurkiewicz)
(X, ρ) を完備距離空間とするとき、部分集合 A ⊂ X について次は同値である。
1.A が X の Gδ-集合であること
2.A 上の距離函数 σ で ρ|A(X の距離函数 ρ の A への制限)と(位相に関する意味で)同値であるようなものが存在して、(A, σ) がふたたび完備距離空間となること
Gδ-集合の重要な性質は、位相空間から距離空間への連続写像がその上で定義され得るということにある。厳密に言えば、そのような写像 f が連続となるような点全体の成す集合は {\displaystyle G_{\delta }} G_{\delta }-集合を成すということである。これは、点 p における連続性というのが Π^0_2-式で定義されることによる。
実数直線の任意の Gδ-部分集合 A に対し、適当な函数 f: R → R が存在して、f は A に属する点のみにおいて連続となるようにすることができる。
このことから、無理数全体の成す集合が連続点集合であるような函数は存在する(トマエの函数(英語版)などを参照)が、有理数の上でのみ連続な函数というのは構成不可能であることが帰結される。
基本的な性質
・Gδ-集合の補集合はFσ-集合である。
・可算個の Gδ-集合の交わりはやはり Gδ-集合である。また、有限個の Gδ-集合の合併はふたたび Gδ-集合となる(可算個の Gδ-集合の合併は Gδσ-集合と呼ばれる)。
・距離化可能空間において、任意の閉集合は Gδ-集合であり、双対的に任意の開集合は Fσ-集合になる。
・稠密開集合の可算族の交わりを含むような集合は残留的 (comeagre, residual) であるという。残留的集合は函数の成す位相空間の生成的性質(英語版)を定義するのに用いられる。
(引用終り)
以上
313:132人目の素数さん
18/02/18 11:25:45.14 +IRfF0OB.net
つまり、
f(x)=0 (x=0), x^{3/2}sin(1/x) (x≠0)
という関数について、次のような性質が成り立っているわけである。
・ 各点 x で Af(x)<+∞ である。すなわち、各点 x で Af(x) は有限値である( Af(0)=0 に注意せよ)。
・ max_{x∈(-1,1)} Af(x) や sup_{x∈(-1,1)} Af(x) は有限値では存在しない。
・ f は (-1, 1) 上ではリプシッツ連続ではない。
これらのことから、お前が言っている
>5)要するに、 lim sup y→x |(f(y) - f(x))/(y - x)|< +∞と、
>リプシッツ連続(=有限なリプシッツ定数を持つ)は、同じことを言っていると思うよ
という主張は自動的に間違いだと分かるし、お前の稚拙な方針は自動的に失敗に終わる。
314:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 11:26:25.72 Mo7Jg5gC.net
>>274
おつです
それ面白いね
ゆとり世代の
さらにゆとりで、超ゆとり?
315:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 11:30:14.82 Mo7Jg5gC.net
>>272
C++さん、あんまりマネしないように
理想は、良�
316:「仲間や指導者が身近にいること 独学というより、自分の努力と言い換えた方が良い それと、楽しめること 独学というのは、良い仲間や指導者が身近にいないときの代案だろう 1.努力、2.良い仲間や指導者 の順だろう
317:132人目の素数さん
18/02/18 11:31:38.51 +IRfF0OB.net
>>288
>下記、Gδ集合wikipediaで
>”実数直線の任意の Gδ-部分集合 A に対し、適当な函数 f: R → R が存在して、
>f は A に属する点のみにおいて連続となるようにすることができる。
>このことから、無理数全体の成す集合が連続点集合であるような函数は存在する
>(トマエの函数(英語版)などを参照)が、有理数の上でのみ連続な函数というのは構成不可能であることが帰結される。”
>とあるでしょ? 開集合が取れる? 無理だろ
論理が滅茶苦茶。
トマエ関数は R-B_f が第一類集合になってないので、開集合が取れなくても何の不思議もない。
お前が墓穴を掘っているのは、次のような意味においてである。
―――――――――――――――――
B_f が Fσ 集合であることを認めるなら、R-B_f が第一類集合であるときには
定理F によって (a,b)⊂B_f なる開区間が取れてしまうので、R-B_f は
R の中で稠密に分布できないことが即座に確定する。
すなわち、R-B_f が第一類集合であるとしつつも「Rの中で稠密」なんていう
アホな場合分けをしたがっているお前にとって、「 Bf は Fσ集合である」
という性質はむしろ邪魔な性質なのである。にも関わらず、お前は
「 Bf は Fσ集合である」と予想しているのである(そして、実際に Bf は Fσ 集合である)。
―――――――――――――――――
↑このような意味において、お前は墓穴を掘っているのである。
そして、トマエ関数は R-B_f が第一類集合になってないので、
上記の話題の出発点に立っておらず、何の意味も成さない。問題外。
318:132人目の素数さん
18/02/18 12:43:20.45 8UexphmN.net
女子高校生に
e^iπ+1=0
と
i^i=1/√(e^π)
を説明したら感動してもらえて数学は芸術の一部だと気づいてもらえた
319:132人目の素数さん
18/02/18 13:34:29.53 WqE33pZi.net
>>292
URLリンク(twitter.com)
320:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 21:58:15.29 Mo7Jg5gC.net
>>282 追加参考
「微分不可能関数への招待」LipschitzとDini方向微係数、ご参照
これは、普通のDini微分の変形版のようだ
URLリンク(www.jstage.jst.go.jp) - char/ja
URLリンク(www.jstage.jst.go.jp) - char/ja
微分不可能関数への招待 石塚 陽(上智大学) 計測と制御 1998
(抜粋)
4. Lipschitz関数の一般方向微係数と一般勾配
ここでは簡単のために,関数fは注目している点xの近傍でLipschitzであるとする.
すなわち,以下をみたすx の近傍N(x)と正の数Kが存在するものとする.
|f(x1) - f(x2)|≦K|x1 - x2|for all x1,x2∈N(x)
このとき,fはxの近くでは連続かつほとんどすべての点
で微分可能であり,関数値の変化率は有限で(Kを超えることはない),
以下の2つの値が必ず存在する.
D^+ f(x~;u)=lim t→0 sup{f(x~+tu) - f(x)}/t
D - f(x~;u)=lim t→0 inf{f(x~+tu) - f(x)}/t
これらをそれぞれ,
上方Dini方向微係数(upper Dini directional derivative),
下方Dini方向微係数(lower Dini directional derivative)
という.
これらの定義式中で,
lim t→0+ sup(lim t→0 - inf)は,正の方からtをゼロに近づけていっ
た時の差商{f(x~+tu) - f(x~)}/tの極限は一般にtのゼロ
への近づき方によっていろいろな値をとりうるので,それ
らの中で最大(最小)のものをとることを意味している.
(引用終り)
石塚陽先生は、亡くなられているようです。合掌
URLリンク(sikyo.net) - /1086773
(抜粋)
石塚陽
いしづか よう
1958 - 2003
上智大教授 システム最適化理論 新潟県
亡くなってから14年233日過ぎました。
45歳で亡くなりました。もし現在も生きていたら60歳です。
1958年に誕生、2003年06月30日に亡くなりました。
(引用終り)
321:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 23:11:0
322:0.39 ID:Mo7Jg5gC.net
323:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 23:13:38.35 Mo7Jg5gC.net
>>295
乙です
桜陰トップか(^^
324:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/18 23:18:54.08 Mo7Jg5gC.net
小平奈緒さん、「金」おめでとうございます!(^^
URLリンク(mainichi.jp)
スピードスケート【詳報】小平が「金」日本女子では初 500m
恩師から自立、強く 小平奈緒「金」
毎日新聞2018年2月18日
(抜粋)
小平が世界最速女王になるまでの道のりは、恩師からの自立の軌跡とも言える。
母校・信州大の教授で、現在も指導を受ける結城匡啓(まさひろ)コーチ(52)との「出会い」は、11歳の時にさかのぼる。
1998年長野五輪。長野県茅野市に生まれ、3歳からスケート靴を履いていた小平は男子500メートル金メダルの清水宏保、女子500メートル銅メダルの岡崎朋美の姿にあこがれ、競技者を志した。長野五輪で清水を日本スケート連盟のスタッフとして支え、その後に指導者になった結城コーチの存在も程なくして知った。
信州大に進学したのは、滑走中の動作解析を研究する結城コーチがいたからだ。就職活動でも結城コーチの指導を引き続き受けられることを条件に挙げた。ともすれば依存に思える関係が変化したのは、500メートル5位、1000メートル13位に終わった2014年ソチ五輪後。強豪国オランダへ練習拠点を移した頃だった。
(引用終り)
325:132人目の素数さん
18/02/19 00:18:24.31 bHNOKlCc.net
おっちゃんです。
スレ主はオリンピックを見ているのか。
ところで、よく分からないんだが、
テンポが遅いクラシック音楽に合わせて滑る
フィギュアスケートの面白さってどこにあるの?
その採点基準とかが全然分からないんだが、
クラシック音楽とは違うところに何某かの面白さがあるんだろ。
>>299
数学の楽しさを理解出来る女子高生は、桜蔭だけにいる訳ではないだろうよ。
326:132人目の素数さん
18/02/19 09:37:57.19 pl8GOd4o.net
>>300
小平奈緒は茅野市出身、小平邦彦の親父権一も茅野市出身、
親類か?
327:132人目の素数さん
18/02/19 23:12:11.26 EJjEbi9w.net
NHK教育を見て54640倍賢く2355
スレリンク(liveetv板)
328:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 00:03:22.95 GZ4CXroY.net
突然ですが、貼っておきます(^^
URLリンク(www.phys.cs.is.nagoya-u.ac.jp)
谷村 省吾 TANI
329:MURA Shogo 教授 博士(理学) 名古屋大 http://www.phys.cs.is.nagoya-u.ac.jp/~tanimura/lectures/tanimura-category.pdf 「物理学者のための圏論入門」 研究会「量子と古典の物理と幾何」にて講演(2017年2月)
330:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 08:42:38.31 GZ4CXroY.net
>>278 追加引用
URLリンク(fuchino.ddo.jp)
冬の旅 ? ポーランドとチェコへの数学の旅11 渕野昌 201712
(抜粋)
P22
A.3 測度とカテゴリー(ただし,ここで言うカテゴリーとは,カテゴリー理
論のそれではなく,第1種(first category) および第2種(second category) の集合に関す
る議論のことである.)
ゼロ集合は測度の意味で小さい集合であるのに対し,第1類の集合はカテゴリーの意味で
小さな集合である. なお,第1類の集合は最近の文献ではmeager set と呼ばれることの
方が多いようである. “meager” は「痩せこけた」という意味である.
可算集合は,ゼロ集合,かつ,第1類の集合である.また,カントル集合も,ゼロ集合,
かつ,第1類の集合であるような例の一つである.しかし,ゼロ集合は,必ずしも第1類
の集合であるとは限らないし,逆に,第1類の集合も,必ずしもゼロ集合とは限らない:
定理A.2 第1類の集合M で,R \ M がゼロ集合になるようなものが存在する. 特に,
M はゼロ集合ではなく,R \M は第1類の集合でない.
上の定理でのM は,カテゴリーの意味では,小さい集合だが,測度の意味では,ほと
んどすべての実数を含んでいることになる.
先に,連続体仮説の仮定のもとで,ゼロ集合と第1類の集合の間に強い形の双対性が成
立すると書いたが,このことは正確に言うと次のようになる:
定理A.3 (シェルピンスキーの双対原理) 連続体仮説を仮定する.この時,全単射f : R →
R で,任意のR の部分集合E に対し,E がゼロ集合であることとf(E) が第1類の集合
であることが同値になるようなものが存在する.
つづく
331:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 08:43:12.56 GZ4CXroY.net
>>305 つづき
したがって,連続体仮説のもとでは,ゼロ集合に対し,ある命題が成り立っているとき,こ
の情況を,上の定理のf によって“翻訳” することにより,これに対応する第1類の集合に
関する命題が成り立っていることが証明できる.逆方向の“翻訳” についても同様である.
測度論では,可測集合と呼ばれるR の部分集合の族が考察されるが,カテゴリーで可
測集合に対応するのは,ベールの性質を持つ集合である.可測集合は可算個のR の閉集
合の和集合ににゼロ集合を付け足して出来る集合であるが,一方,ベールの性質を持つ集
合は,可算個の開集合の共通部分に第1類の集合を付け足して出来る集合である.開集合
や閉集合の集合論的振舞は,比較的単純であるので,可測集合,あるいは,ベールの性質
を持つ集合の全体に関する問題の研究は,多くの場合,それに対応するゼロ集合や第1類
の集合に関する問題について調べることに帰着される.特に,連続体仮説が成り立ってい
るときには,定理A.3 により可測集合の全体とベールの性質を持つ集合の全体の性質は,
たいへん似たものになる.
(引用終り)
以上
332:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 22:03:08.99 GZ4CXroY.net
>>305 補足
渕野先生の話は、下記など、いつも面白いね(^^
”可算集合は,ゼロ集合,かつ,第1類の集合である.また,カントル集合も,ゼロ集合,
かつ,第1類の集合であるような例の一つである.しかし,ゼロ集合は,必ずしも第1類
の集合であるとは限らないし,逆に,第1類の集合も,必ずしもゼロ集合とは限らない:
定理A.2 第1類の集合M で,R \ M がゼロ集合になるようなものが存在する. 特に,
M はゼロ集合ではなく,R \M は第1類の集合でない.
上の定理でのM は,カテゴリーの意味では,小さい集合だが,測度の意味では,ほと
んどすべての実数を含んでいることになる.
先に,連続体仮説の仮定のもとで,ゼロ集合と第1類の集合の間に強い形の双対性が成
立すると書いたが,このことは正確に言うと次のようになる:
定理A.3 (シェルピンスキーの双対原理) 連続体仮説を仮定する.この時,全単射f : R →
R で,任意のR の部分集合E に対し,E がゼロ集合であることとf(E) が第1類の集合
であることが同値になるようなものが存在する.”
333:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 22:06:03.83 GZ4CXroY.net
>>302-303
レスありがとう(^^
オリンピック見るので、忙しいんだ(^^
334:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 22:23:41.23 GZ4CXroY.net
>>301
おっちゃん、どうも、スレ主です。
採点基準は下記
URLリンク(matome.na)<)
キムヨナが使用した007のテーマ曲の題名は何ですか kitakantou_na_1さん yahoo 2010/9/507:28:44
335:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 22:23:50.87 GZ4CXroY.net
渡部暁斗さん、残念でしたが、お疲れさまでした
URLリンク(www.yomiuri.co.jp)
336:mpic/2018/ski/20180220-OYT1T50114.html?from=ytop_top 渡部暁斗は5位、メダル獲得ならず…複合LH 読売 2018年02月20日 (抜粋) 前半飛躍で、134メートルを飛び、首位に立った渡部暁は、NHを制したエリック・フレンツェル(独)らの猛追を受け、6キロ過ぎには先頭集団は6人に。残り1周となる7・5キロ地点では7人になった。この大混戦の中、残り1キロを切って他の選手と接触し、失速した。 優勝は、ヨハネス・ルゼック(独)。距離を4~6位でスタートしたドイツ勢が表彰台を独占した。 (引用終り)
337:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 22:31:56.85 GZ4CXroY.net
>>301
>数学の楽しさを理解出来る女子高生は、桜蔭だけにいる訳ではないだろうよ。
まあな
うちの子が、小学生のとき、塾に行っていて、そこの塾の模試で常に算数で、男の子を押さえてトップ陣に食い込む女の子が居た
その子は、桜陰から東大理I に入った(数学科進級じゃないが)
それを思い出したんだ
おそらく、数学もできただろうと
338:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 23:27:52.66 GZ4CXroY.net
>>301
(抜粋)
5 圏論のご利益
圏論が役に立つことがあるのか?と問われると,なかなか答えに窮しますが,数学の中で
役に立つことと,数学外の分野で役に立つこととを分けて考えるのがよいと思います.
圏論が数学の中で役に立つ側面としては,さまざまな数学分野に繰り返し現れるパターン
を横断的に特徴付けるという圏論の役割があります.例えば,群には部分群・正規部分群・
商群,環には部分環・イデアル・商環,ベクトル空間には部分空間・商空間といった,よく
似た構造があり,群論・環論・線形代数のどの理論でも準同型定理と呼ばれるそっくりの定
理が成り立ちます.準同型定理はどの理論でもほぼ同様のルーチンワークで証明できます.
また,いま挙げたどの理論にも直積と呼ばれる構造があって,直積の一意性は同様のルーチ
ンワークで証明できます.圏論は,こういったさまざまな理論に見られる相似構造を抽出し
て,まとめて面倒を見ることができます.
また,圏論を使うと,異なる数学理論の間の関係を一段高い視点から見ることができます.
例えば,位相空間論と群論は別の理論ですが,ホモトピーは位相空間の圏から群の圏への関
手だと言えます.位相空間の一つ一つの点が群の一つ一つの元と対応しているわけではない
ので,ホモトピーは位相空間から群への写像ではありません.けれども,ホモトピーは関手
だという視点に立つと,位相空間の世界と群の世界とが連動していることがよくわかるので
す.元のレベルでone-to-one 対応はしていないけれども,元を束ねた空間とか群のレベル
でmany-to-many 対応している様子を関手はうまく捉えるのです.「木を見て森を見ず」
という言葉がありますが,圏論は,まさにその逆の「木を気にせず森を見る」ような視点を
提供してくれるのです.
つづく
339:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/20 23:29:40.12 GZ4CXroY.net
>>312
訂正 >>301→>>304
つづき
ホモロジーは位相空間の圏から加群の圏への関手だと言えます.位相空間の境界という概
念を関手を通して加群の方に写すと,ホモロジー代数という構造が見えてきますが,これは
加群だけを見ていたのでは見抜けないような構造だと言えます.ホモロジー関手も,点レベ
ルにまで分解されたone-to-one 対応では見抜けない,structure-to-structure 対応とで
もいうべ
340:き関係を見させてくれるのです. また,二つの一見異なる数学分野の概念が互いに変換可能であることを主張する双対性 (duality) という高次の概念がしばしば見い出されますが,そのような概念は圏論の随伴 (adjunction) という概念を使うと適切に捉えられます. このように,数ある数学理論の共通構造を横断的に見い出したり,異なる数学理論の連動 する性質を的確に言い表したりするのに圏論は役に立ちます.そういった意味で,圏論は大 風呂敷を広げるようなところがあります.それが圏論の魅力でもあるし,何にでも通用す るような当たり前のことばかり言って何も固有の主張がないように見えて,「圏論はgeneral nonsense だ」,「abstract nonsense だ」と やゆ(揶揄)されるところでもあります. たしかに,圏論 だけを勉強することは論理的には可能ですが,いろいろな数学分野を知っていないと圏論の ありがたみがわからないし,圏論以外の数学を知らないと面白い圏や関手の例を作ることす らできないと言えます. (引用終り) 以上
341:132人目の素数さん
18/02/21 00:02:28.74 er9RHyGj.net
>>311
> うちの子が、小学生のとき、塾に行っていて、
スレ主のお子さんも既に大きいでしょうに そんな馬鹿ばかりやってていいんですか?
342:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 00:17:38.99 a52Ma5wE.net
>>248
(引用開始)
(>>204より)
1)定理1.7の条件;lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ ( lim supが有限)
↓↑
3)定理1.7の結論;リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)(k 有限)
3)が見かけ一番強い条件で、3)→1)を見るのは易しい(>>205に書いた)
だから、1)→3)が言えれば良い
(引用終り)
<経過報告2>
・1)→3)を主張する文献は見つかっていない。というか、命題1)があまり無い。3)のリプシッツ連続は山ほどある(^^
・背理法より、対偶証明で行けるのではと思う
・つまり、¬3)→ ¬1)が言えるだろう
¬1):”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”
つまり、ある開区間(a,b)内で、リプシッツ連続でない点x0があるとして、
x0では、実数y→x0 に対し |f(x0)-f(y)/(x0-y)| →∞ を満たすことになり
↓
lim sup y→x |(f(y) - f(x0))/(y - x0)|= +∞ となる
QED
かな?(^^
・証明? なんか書けるだろう。例えば、ここで背理法で
lim sup y→x |(f(y) - f(x0))/(y - x0)|=k < +∞ にも関わらず、 |f(x0)-f(y)/(x0-y)| →∞ は矛盾とか・・
結局、背理法かも・・
・あんまり進んでないな・・(^^
343:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 00:18:55.50 a52Ma5wE.net
>>314
はい
そっくり、お返しします
344:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 00:25:38.94 a52Ma5wE.net
まあ、マジレスすれば
数学をやっていると
私らの住んでいる技術の世界は、鳥無き郷のコウモリでいられるし
なにか、技術文献読むときも、目が慣れていると「ふんふん」と進むし
だれかが、新しい数学ネタを入れた論文でも(昔実際にあったのがδ関数を使ったやつ)、「それ知ってる」で終わる
とかね
実益ありです(^^
345:132人目の素数さん
18/02/21 01:35:47.90 INI2YWN5.net
と、εδも命題もわからぬバカがマジレスしています
346:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 10:04:30.90 rh78w8vi.net
時枝不成立も分からず、定理1.7のおかしさも分からん、腰ぎんちゃくさん(^^
347:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 10:25:57.85 rh78w8vi.net
>>317 補足
まあ、さらにマジレスすれば、知識は多い方が良い! が、知識を獲得するのに時間が必要だ
だから、人生で必要にして最小限の知識を(過�
348:s足なく)得ることができれば理想だ が、人がいまから必要な知識のみを得ることはできない。 だから、幅広い知識と同時に体系化された知識、それも借り物ではなく自分なりに、消化吸収され身についたもの、自在に応用できるよう それを目指すべき ところで、下記の例、大栗先生が、マシュームーンシャインインを発見された どこかで読んだが、大栗先生が岩波数学辞典の後ろの付録で見たマシュー群との関連に気づいたのだとか 大栗先生が、マシュー群の詳細を事前に知っていなければ、マシュームーンシャインインは未発見になり、まあ、別の誰かが発見したんだろうね 大栗先生が、マシュー群の詳細をなにゆえ知っていたのか? その経緯は分からない だが、一方で、人が、ただ雑学として、マシュー群の詳細を知っていても、マシュームーンシャインインには到達しないことは、明らかだ 幅広い知識と同時に体系化された知識。かつ、それを、自家薬籠のものとして、自由自在に応用する実力 それが大事だってことだよね つづく
349:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 10:27:05.06 rh78w8vi.net
>>320 つづき
URLリンク(planck.exblog.jp)
モック保形性と月影 大栗博司のブログ 2015年 04月 17日
(抜粋)
数式:URLリンク(planck.exblog.jp)
カナダのウォータールー市にあるペリメータ研究所で開かれている 「モック保形性と月影」 と題した国際会議に来ています。
上の式は、私が1989年に東京大学に提出した博士論文から取りました。
この式の係数、90、462、1540、4554、11592などは、超弦理論をK3と呼ばれる空間にコンパクト化したときに現れる粒子状態の数で、私の博士論文の成果のひとつは、これらの数を計算する方法を開発したことでした。
しかし、これらの数の背景にある基本原理は、長い間わかりませんでした。
それからちょうど20年経った2009年に、江口徹さんと立川裕二さんとアスペン物理学センターで話をしているときに、
これらの数字を2で割った、45、231、770、2277、5796などが、マチュー群と呼ばれる有限群の中の一番大きなM24の既約表現の次元になっていることに、3人で気がつきました。
私たちの発見は、「マチュー月影」と呼ばれて、その後いろいろな方面から研究されるようになりました。
月影というのは、英語では "Moonshine" といいますが、夜、池の表面に映った月の光、それから転じて、「実体のない反映」、さらには、「ばかげたこと」という意味になったのだそうです。
つづく
350:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 10:27:46.07 rh78w8vi.net
>>321 つづき
もともとの「モンスター月影」の舞台となったj‐函数は保形性を持っていますが、「マチュー月影」の舞台になるのは、ラマヌジャンが考えた「モック・モジュラー(保形)形式」でした。
今回の会議のタイトルが 「モック保形性と月影」 となっているのは、そのようなわけでした。
モック・モジュラー形式については、先日ケンブリッジ大学を訪問し、「ラマヌジャンの失われたノート」を拝見したときのブログ記事
URLリンク(planck.exblog.jp)
に書きました。
ペリメータ研究所を訪問するのは、10年ぶりです。トロント市から車で1時間ぐらいのところで、冬の気候は厳しいと聞いていますが、建物の中はとても快適にできています。左の写
351:真は、1階の広場で、左奥がレストランになっています。 (引用終わり) 以上
352:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 10:47:47.07 rh78w8vi.net
>>320 補足の補足
まあ、ガロアスレは、私のメモ帳でね
どちらかと言えば、雑学&雑談系だが
いろいろ書くことで、体系化される面もある
あと、検索で、google先生を使える
現代数学の系譜 ガロア理論 + キーワード(知りたいことの)
で検索を掛けると、ガロアスレの検索が(優先的に)できるし、ガロアスレの外も検索してくれるので便利なんだ
そんなことを繰り返していると、自分なりに消化でき体系化できる
もちろん、仕事優先ですがね。あと、オリンピックなどイベントがあるときも、そちら優先
佐藤幹夫先生みたく、「朝起きてから寝るまで、かつ夢の中まで数学」という集中する時期があってもいいが(実際そういうときもある)
彼女もできない
結婚もできない
ではねと
それは、ちょっとね
実際、大栗先生には家族がいるよ
URLリンク(planck.exblog.jp)
授業参観と漢字 大栗博司のブログ 2009年 11月 08日
(抜粋)
今日は子供の日本語補習授業校の授業参観がありました。
土曜日に、日本の1週間分の授業をするのですから、大変だと思います。
しかし、子供たちは集中して先生の話を聞いていて、手もしっかり上がっていました。
先生方が献身的なのには、同じ教師として頭が下がります。
(引用終わり)
353:132人目の素数さん
18/02/21 10:48:03.37 AU5NUpfo.net
>>アスペン物理学センター
アスペ物理学センターと空目した
354:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 13:44:10.96 rh78w8vi.net
>>315 補足
(引用開始)
(>>204より)
1)定理1.7の条件;lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ ( lim supが有限)
↓↑
3)定理1.7の結論;リプシッツ連続 (”任意の実数x,yに対し |f(x)-f(y)|<= k|x-y| を満たす0以上のkがとれる”>>199より)(k 有限)
(引用終わり)
まあ、>>315に書いたように、
3)リプシッツ連続→1)定理1.7の条件成立 は、ほぼ自明
また、1)→3)は、対偶:¬3)→ ¬1)が言えるから、逆も成立(∵リプシッツ不連続 k=∞ → 定理1.7の条件式=∞ 成立 )
だから、1)と3)は同値
で(>>13より)
(引用開始)
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) - f(x))/(y - x)|< +∞ }
と置く: もしR-Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
(引用終わり)
「f はある開区間の上でリプシッツ連続」は、即その開区間(a,b)で、条件Bfを満たすので、この区間はBfに含まれる( (a,b)⊂Bf )
同じことだが、Bfの補集合R-Bfが、R中で稠密なら、Bf内に上記のような開区間(a,b)は持てないし、リプシッツ連続な区間もない
まとめると
・Bf内にある開区間(a,b)があれば、その開区間(a,b)が即リプシッツ連続な区間でもあるし(補集合R-Bfが、R中で稠密でない場合)
・Bf内にある開区間(a,b)がなければ、リプシッツ連続な区間もない(補集合R-Bfが、R中で稠密な場合)
それだけのことだろ
以上
355:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 13:50:21.05 rh78w8vi.net
>>324
はい(^^
URLリンク(planck.exblog.jp)
アスペン物理学センター50周年 大栗博司のブログ 2012年 08月 13日
(抜粋)
アスペン物理学センターは、50年前に、当時30歳になったばかりの物理学者ジョージ・ストラナハンさんが、ここに夏の間物理学者が集う場所があればよと思いついたことに始まります。
ストラナハンさんは、ファインマンさんの学生だったマイケル・コーエンさんと、アスペン・インスティテュートの所長だったロバート・クレイグさんの協力を得て、物理学センターを始めました。
最初は、アスペン・インスティテュートの一部でしたが、その後に独立し、今ではひと夏に600人以上の物理学者が滞在する施設になりました。
どこの組織にも属さず、米国を中心とした世界各国の物理学者がボランティアとして運営している団体です。私も理事および執行役員として、お手伝いをしています。
7月のお祝いのパーティには、創設者のストラナハンさん、コーエンさん、ク�
356:激Cグさんが久しぶりに集まり、当時のお話を聞かせてくださいました(右の写真)。 (引用終わり)
357:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 14:02:34.03 rh78w8vi.net
>>326
>>ファインマンさんの学生だったマイケル・コーエンさん
このコーエンさんと、強制法のコーエンさんとは別人ですね
URLリンク(fuchino.ddo.jp)
渕野 昌 (Sakae Fuchino) の web page.
URLリンク(fuchino.ddo.jp)
“コーエンの強制法” と強制法1) 2) 2016
358:132人目の素数さん
18/02/21 16:10:11.18 +gp5lvHt.net
>>325
>だから、1)と3)は同値
ぜんぜんダメ。同値にならない。
―――――――――――――――――
問:ある点 x で A_f(x)<+∞ なら、x を含むある開区間の上で A_f は必ず有限値になるか?
→ 必ずしもならない。f(x)= x^2 (xは有理数), -x^2 (xは無理数)
と置くと、A_f(0)=0 だが、A_f(x)=+∞ (x≠0) である。
問:ある点 x で A_f(x)<+∞ なら、x を含むある開区間の上で f はリプシッツ連続になるか?
→ 必ずしもならない。上と同じ関数 f に対して、A_f(0)=0 であるが、
f はどの開区間の上でもリプシッツ連続ではない。
問:ある開区間 (a,b) の中の各点 x で A_f(x)<+∞ なら、(a,b) 全体で f はリプシッツ連続になるか?
→ 必ずしもならない。f(x)= 0 (x=0), x^{3/2}sin(1/x) (x≠0)
と置くと、(-1, 1) 上の各点 x で A_f(x)<+∞ である(A_f(0)=0に注意)。
しかし、f は(-1, 1)全体ではリプシッツ連続ではない。
―――――――――――――――――
359:132人目の素数さん
18/02/21 16:12:00.47 +gp5lvHt.net
>>325
>まとめると
>・Bf内にある開区間(a,b)があれば、その開区間(a,b)が即リプシッツ連続な区間でもあるし(補集合R-Bfが、R中で稠密でない場合)
間違っている。(a,b)⊂B_f が成り立つとしても、(a,b)全体で f がリプシッツ連続だとは限らない。
(1)と(3)が同値だと勘違いしているから、そういう間違いに陥るのである。何度も書いているように、
f(x)= 0 (x=0), x^{3/2}sin(1/x) (x≠0)
とするとき、(-1,1)上の各点 x で A_f(x)<+∞ が成り立つので、(-1,1)⊂B_f が成り立つことになるが、
しかし f は(-1,1)全体ではリプシッツ連続ではない。なお、この f については A_f(0)=0 が成り立つことに
注意せよ( A_f(0)=+∞ だと勘違いするな)。
結局お前は、
「 (a,b)⊂B_f が成り立つなら、f はある開区間の上で自明にリプシッツ連続だ」
という主張が ぜんぜん自明に証明できないままでいる。自明どころか、そもそも全く証明できていない。
それもそのはず、正しい証明には >>110 の手法を使うしかなく、お前ごときでは絶対に証明できないのである。
360:132人目の素数さん
18/02/21 16:14:11.19 +gp5lvHt.net
>>325
>・Bf内にある開区間(a,b)がなければ、リプシッツ連続な区間もない(補集合R-Bfが、R中で稠密な場合)
>
>それだけのことだろ
ぜんぜん まとめになってない。
「 Bf内に開区間が取れないなら、リプシッツ連続な区間も取れない 」
というのはその通りだが、そのことは 定理1.7 に対して何の批判にもなっていない。
定理1.7 とは、「 R-B_f が第一類集合なら、f はある開区間の上でリプシッツ連続である 」
というものである。B_f 内に開区間が取れるか否かを問題にしつつ定理1.7を批判するなら、
お前は次のように主張しなければならない。
「 R-B_f が第一類集合なのに、B_f が全く開区間を含まないような具体例があるので、定理1.7 は間違っている」
しかし、お前はそのような具体例を1つも提示していない。
実際には、定理1.7 もしくは 定理F により、R-B_f が第一類集合なら B_f は開区間を含むので、
お前は 定理1.7 を否定する材料を完全に失っているのである。
361:132人目の素数さん
18/02/21 16:16:24.77 +gp5lvHt.net
以下、再び 定理F について書いておく。
定理F:
A ⊂ R は Fσ集合とする。もし R-A が第一類集合ならば、
(a,b)⊂A を満たす開区間 (a,b) が存在する。
証明:
STEP1:
A は Fσ 集合だから、高々可算無限個の閉集合 A_k が存在して A = ∪_k A_k と書ける。
一方で、R-A は第一類集合だから、高々可算無限個の、内点を持たない閉集合 F_k が存在して
R-A ⊂ ∪_k F_k と書ける。結局、R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) ということになる。
STEP2:
A_k, F_k はどれも閉集合だから、これと R ⊂ (∪_k A_k ) ∪ (∪_k F_k ) から、
ベールのカテゴリ定理が使えて、ある A_k もしくはある F_k は内点を持つ。
F_k は内点を持たないのだから、ある A_k が内点を持つしかない。
そのような A_k に対して、(a,b)⊂A_k なる開区間が取れるので、
A = ∪_k A_k に注意して、(a,b) ⊂ A となる。従って、定理F が成り立つ。
362:132人目の素数さん
18/02/21 16:18:06.05 +gp5lvHt.net
さて、B_f は Fσ 集合なので、上記の 定理F と組み合わせると、
「 R-B_f が第一類集合なら、B_f は開区間を含むので、R-B_f は R の中で稠密にならない」
ということが即座に確定する。
お前は未だに、R-B_f が R の中で稠密か否かで場合分けしようとしているが、
そのような場合分けは、お前の屁理屈によれば「最初から存在しない」のである。
定理1.7 に対するお前の批判は、これにて完全に崩壊する。
363:132人目の素数さん
18/02/21 16:19:22.96 +gp5lvHt.net
あと、>>286 の焼き直しになるが、定理Fについて補足する。
定理F を「 Gδ集合 」で書き直すと、次のようになる。
定理F1:
A ⊂ R は、R-A がGδ集合とする。もし R-A が第一類集合ならば、(a,b)⊂A を満たす開区間 (a,b) が存在する。
実は、さらに強く、次の定理も証明できる。
定理F2:
A ⊂ R は、R-A がGδ集合とする。もし R-A が第一類集合ならば、R-A は nowhere dense である。
ここまで来ると、「 R-A 」を1文字にした方がキレイなので、そうすると次のようになる。
定理F3:
A ⊂ R は、A がGδ集合とする。もし A が第一類集合ならば、A は nowhere dense である。
これに関しては、"Gδ set of first category" で検索すると、
1件だけだが上記の 定理F3 を使っていると思しき pdf が見つかる。
URLリンク(fm.math.uni.lodz.pl)
> Observe that ∩[m=1~∞] ∪[n≧m] A_n as Gδ set of first category is
> easily seen to be nowhere dense.
このことからも、定理F, F1,F2,F3 は全て正しいと分かる。
間違っているのはスレ主ただ1人だけ。キチガイ。ゴミクズ。問題外。
364:132人目の素数さん
18/02/21 20:12:44.86 INI2YWN5.net
>いろいろ書くことで、体系化される面もある
一つ一つを全く理解できてないのに体系化できると稀代のアホが豪語しております
365:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 22:40:05.94 a52Ma5wE.net
日本女子パシュート金、おめでとう! \(^^/
URLリンク(www3.nhk.or.jp)
スピードスケート女子団体パシュート 日本が金メダル NHK 2月21日 22時04分
366:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/21 23:22:57.59 a52Ma5wE.net
>>305 補足
渕野先生 定理A.3 (シェルピンスキーの双対原理)
これ、>>279 渕野昌 (2002) (PDF), 実数の集合論の基礎の基礎 に関連記述があるね
URLリンク(math.cs.kitami-it.ac.jp)
P33
(抜粋)
3.3 双対性定理
次の定理は,連続体仮説のもとで,疎集合の?-イデアルと零集合の?-イデアルの間には強
い双対性が成り立っていることを主張している.特にこの定理でのf で移すことにより,
疎集合の性質は対応する零集合の性質に翻訳され,逆も真である.
(引用終り)
367:132人目の素数さん
18/02/22 21:48:15.82 huWPA/KD.net
>>319
> 時枝不成立も分からず
スレ主の時枝不成立理論だと
1) 箱が1つあって1から6の自然数を出題者がランダムに1つ選んで数字を箱の中に入れて箱を閉じる
2) 箱を開けて中の数字を確認してから箱を閉じることを出題者とは別の複数人(人数6n)がそれぞれ行う
3) 6n人が箱の中身を答えると1から6の数字を答える人数はnが十分大きければそれぞれほぼn人ずつになる
となるから
この場合(1から6の自然数)の数当ての成否(時枝成立or不成立も同じ)の判定を間違える確率は5/6
箱に入れる数字の種類を増やしていけば判定を間違える確率は1に近づいていくが
実際にスレ主は成否の判定を間違えている
368:132人目の素数さん
18/02/22 23:58:12.48 /xLKscx+.net
スレ主の言う確率は当てずっぽで当たる確率
時枝戦略は当てずっぽではないので根本的にナンセンス アホ丸出し
369:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/23 00:08:59.81 AxycX5uE.net
>>328
1)
(引用開始)
問:ある点 x で A_f(x)<+∞ なら、x を含むある開区間の上で A_f は必ず有限値になるか?
→ 必ずしもならない。f(x)= x^2 (xは有理数), -x^2 (xは無理数)
と置くと、A_f(0)=0 だが、A_f(x)=+∞ (x≠0) である。
(引用終り)
意味わからん。何を言いたいのかな?
2)
(引用開始)
問:ある点 x で A_f(x)<+∞ なら、x を含むある開区間の上で f はリプシッツ連続になるか?
→ 必ずしもならない。上と同じ関数 f に対して、A_f(0)=0 であるが、
f はどの開区間の上でもリプシッツ連続ではない。
(引用終り)
意味わからん。「A_f(x)<+∞ なら」と書いておきながら、「A_f(x)=+∞ (x≠0) である」だと? 「リプシッツ連続ではない」と
何を言いたいのかな?
3)
(引用開始)
問:ある開区間 (a,b) の中の各点 x で A_f(x)<+∞ なら、(a,b) 全体で f はリプシッツ連続になるか?
→ 必ずしもならない。f(x)= 0 (x=0), x^{3/2}sin(1/x) (x≠0)
と置くと、(-1, 1) 上の各点 x で A_f(x)<+∞ である(A_f(0)=0に注意)。
しかし、f は(-1, 1)全体ではリプシッツ連続ではない。
(引用終り)
A_f(x)の定義がないが・・、A_f(x)=|f(y)-f(x)|/|y-x|でいいかな?
下記より、その例は下記wikipediaと同じ例だ。「その導函数は有界でない」とあるから、”lim y→0 A_f(x)<+∞”ではないよ
あと、重箱の隅だが、下記で”閉区間 [0,1] へ制限”とあるよ。
分るかな? 分数べきの分母が偶数のとき、x<0はまずい。
x<0の例を考えるなら、分母は偶数でないと。
(>>282より)URLリンク(ja.wikipedia.org)
リプシッツ連続
(抜粋)
例
可微分だが(大域)リプシッツ連続でない
・函数 f(x) = x^3/2sin(1/x) (x ≠ 0) かつ f(0) = 0 を閉区間 [0,1] へ制限したものは、コンパクト集合上微分可能だが局所リプシッツでない函数の例を与える。実際、その導函数は有界でない。
(引用終り)
370:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/23 00:12:40.47 AxycX5uE.net
>>337-338
ご苦労さん
一見数学ぽいことを書いてんだね(^^
371:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/23 00:18:46.10 AxycX5uE.net
>>339 訂正
”lim y→0 A_f(x)<+∞”
↓
”lim y→0 A_f(y)<+∞”
か
追記
” lim sup y→x |(f(y) - f(x))/(y - x)|”みたいな書き方があまりよろしくないかも
変数と定数の表現を区別する方がいいだろう
” lim sup y→x0 |(f(y) - f(x0))/(y - x0)|”
あるいは
” lim sup y→c |(f(y) - f(c))/(y - c)|”
とか
372:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/23 08:38:59.92 AxycX5uE.net
突然ですが、平昌五輪 女子スケート金
”組織力で世界と互角以上に戦う” これが、日本の一つのめざすべき姿だろう。数学の分野でも
URLリンク(www.yomiuri.co.jp)
女子スケート金 一体的な強化策が実を結んだ 読売 2018年02月23日
(抜粋)
組織力で世界と互角以上に戦う姿は、16年リオデジャネイロ五輪で銀メダルだった陸上男子400メートルリレーのメンバーと重なる。
(引用終り)
373:132人目の素数さん
18/02/23 17:11:47.16 j39gs3Lv.net
>>339-341
A_f(x)という表記は、今まで散々使ってきた表記である。お前もこの表記を何度も見てきたはずである。
なぜ今さら「知らないふり」をするのか理解に苦しむ。A_f(x)の定義を改めて書くと、x∈R に対して
A_f(x) = limsup[y→x]|(f(y)-f(x))/(y-x)|
と定義するのである。定数と変数の区別がつかないとかいうアホなスレ主のために、
スレ主のスタイルで定義すると、各点 x_0∈R に対して
A_f(x_0) = limsup[y→x_0]|(f(y)-f(x_0))/(y-x_0)|
と定義するのである。この定義のもとで、
B_f = { x∈R| A_f(x)<+∞ }
と簡潔に表現できることに注意せよ。あるいは、全く同じことだが、
B_f = { x_0∈R| A_f(x_0)<+∞ }
と簡潔に表現できることに注意せよ。ちなみに、f が点 x_0 で微分可能ならば、
A_f(x_0) = |f ' (x_0)|
が成り立つことにも注意せよ。
374:132人目の素数さん
18/02/23 17:13:24.82 j39gs3Lv.net
さて、上記の表現のもとで、改めて>>328を書き直す。
とは言っても、ほとんど>>328のコピペだがな。
―――――――――――――――――
問1:ある点 x で A_f(x)<+∞ なら、その点 x を含むある開区間の上で A_f は必ず有限値になるか?
→ 必ずしもならない。f(x)= x^2 (xは有理数), -x^2 (xは無理数)
と置くと、A_f(0)=0 だが、A_f(x)=+∞ (x≠0) である。
問2:ある点 x で A_f(x)<+∞ なら、x を含むある開区間の上で f はリプシッツ連続になるか?
→ 必ずしもならない。上と同じ関数 f に対して、A_f(0)=0 であるが、
f はどの開区間の上でもリプシッツ連続ではない。
問3:ある開区間 (a,b) の中の各点 x で A_f(x)<+∞ なら、(a,b) 全体で f はリプシッツ連続になるか?
→ 必ずしもならない。f(x)= 0 (x=0), x^{3/2}sin(1/x) (x≠0) と置くと、
(-1, 1) 上の各点 x_0 で A_f(x_0)=|f ' (x_0)|<+∞ である(A_f(0)=|f ' (0)|=0に注意)。
しかし、f は(-1, 1)全体ではリプシッツ連続ではない。
―――――――――――――――――
375:132人目の素数さん
18/02/23 17:15:25.87 j39gs3Lv.net
>>339-341
さて、お前が主張しているのは、
(i)「 (a,b)⊂B_f ならば、f は (a,b)全体でリプシッツ連続だ 」
という間違った主張である。B_f = { x_0∈R| A_f(x_0)<+∞ } だったから、
上記の(i)をA_f(x)を使って書き直すと、次のように言い換えできる。
(ii)「 各点 x_0∈(a,b) に対して A_f(x_0)<+∞ ならば、f は(a,b)全体でリプシッツ連続だ」
このように書けば、(i),(ii)が間違っていることは明白である。なぜなら、
f(x)= 0 (x=0), x^{3/2}sin(1/x) (x≠0)
が反例になるからだ。この f に対して、(-1, 1) 上の各点 x_0 で A_f(x_0)=|f ' (x_0)|<+∞ が
成り立つが、しかし f は(-1, 1)全体ではリプシッツ連続ではない。
なお、 A_f(0)=|f ' (0)|=0 が成り立つことに注意せよ。A_f(0)=|f ' (0)|=+∞ だと勘違いするな。
376:132人目の素数さん
18/02/23 17:17:15.33 j39gs3Lv.net
>>339
> ・函数 f(x) = x^3/2sin(1/x) (x ≠ 0) かつ f(0) = 0 を閉区間 [0,1] へ制限したものは、
>コンパクト集合上微分可能だが局所リプシッツでない函数の例を与える。実際、その導函数は有界でない。
「導関数」が存在している時点で、(-1, 1) 上の各点 x_0 で A_f(x_0)<+∞ が成り立つことが確定している。
なぜなら、既に述べたように、f ' が存在する場合には A_f(x_0) = |f ' (x_0)|が成り立つからだ。
当然ながら|f ' (x_0)|<+∞ なので、A_f(x_0)<+∞ である。つまり、各 x_0∈(-1, 1) に対して
A_f(x_0)<+∞ である。そ
377:して、B_f = { x_0∈R| A_f(x_0)<+∞ } だったから、 (-1,1)⊂B_f ということになる。しかし、f は (-1,1)上ではリプシッツ連続ではない。従って、お前が主張している (i)「 (a,b)⊂B_f ならば、f は (a,b)全体でリプシッツ連続だ 」 という主張は間違っているのである。 ちなみに、上記の f に対して、f ' は有界ではない。ここでの「有界ではない」とは、 「 |f '(x_0)|=+∞ が成り立つ点 x_0∈(-1,1) が存在する 」 という意味ではなく、 「 max_{ x_0∈(-1,1)}|f '(x_0)| や sup_{ x_0∈(-1,1)}|f '(x_0)| が有限値として存在しない 」 という意味である。お前はこのことと、「各点 x_0∈(-1,1) で |f ' (x_0)|<+∞ が成り立つ 」 ということとを混同している。
378:132人目の素数さん
18/02/23 17:19:12.56 j39gs3Lv.net
>>339
一応、このレスにも返答しておく。
>意味わからん。何を言いたいのかな?
>意味わからん。「A_f(x)<+∞ なら」と書いておきながら、
>「A_f(x)=+∞ (x≠0) である」だと? 「リプシッツ連続ではない」と
>何を言いたいのかな?
その部分は、「問1」「問2」を考えて、それらの問に対する反例を挙げているだけである。
「当然、問1,問2には反例があるだろう」と理解しているなら、それでよい。
>A_f(x)の定義がないが・・、A_f(x)=|f(y)-f(x)|/|y-x|でいいかな?
>下記より、その例は下記wikipediaと同じ例だ。「その導函数は有界でない」とあるから、”lim y→0 A_f(x)<+∞”ではないよ
A_f(x)の定義は再度 >>343 に書いたので、きちんと参照せよ。
というか、お前は既に A_f(x) の定義を知っていたはずである。
なぜ今さら「知らないふり」をするのか理解に苦しむ。
379:132人目の素数さん
18/02/23 18:27:01.69 WAwSI90B.net
久し振りに来ました、おっちゃんです。
幾何や代数、表現論など他の分野と混じり気のないような純粋な解析に直観は禁物。
スレ主はこれを心得ること。
直観が通じそうでも或いはなさそうでも、場合によっては、議論に物凄いギャップがあることがある。
じゃ、おっちゃん寝る。
380:132人目の素数さん
18/02/23 22:55:07.32 7Dd2TAAL.net
教科書は信じない
信じるのは己の直観のみ
スレ主
381:132人目の素数さん
18/02/23 23:04:00.04 1jZWcxhz.net
君らはコイツを見習うべき
URLリンク(mobile.twitter.com)
大類昌俊
382:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/23 23:12:15.70 AxycX5uE.net
カーリング女子、残念でした
明日の3位決定戦、頑張って下さい
URLリンク(vdata.nikkei.com)
日経 2018/2/23
カーリング女子準決勝で日本は延長戦の末、韓国に7-8で敗れました。あす夜、イギリスとの3位決定戦に臨みます。
383:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/24 10:45:26.16 Q5nVtg0b.net
SiegelのE 関数
和文では、情報がほとんどない
URLリンク(www.ma.noda.tus.ac.jp)
1 対数一次形式の理論と応用: Hermite からBaker,Matveev まで 平田典子(Noriko Hirata-Kohno) 日本大学理工学部数学科 2006
(抜粋)
P30
Definition 4.1 (E 関数)
略
例えば,z の代数的数係数多項式,exp(z), sin z, cos z,Bessel 関数などはE 関数となる.E
関数の研究はC. L. Siegel が始めた.典型的な結果としてはたとえば次[76] が得られている.
Theorem 4.1 (A. B. Shidlovskii)
これはSiegel-Shidlovskii の定理と呼ばれるが,その代数的な別証明もある([4], [5]).Y. Andr´e
による最近の研究が進んでいる.
さらにG 関数と呼ばれる関数を定めよう.
Definition 4.2 (G 関数) 次のような解析関数を考える.
G 関数の
例としては通常の対数関数,その一般化であるpolylogarithm,Gauss の超幾何級数や一般超
幾何関数などがある.G 関数の数論的な性質については微分方程式論とも深く関連している
[3], [
384:65]. 数論において意味のある良く知られた関数としてRiemann のゼータ関数ζ(s) がある.s が2 以上の奇整数のときにζ(s) が超越数か否かという問題がある.最も一般的な予想としては次 がある. http://swc.math.arizona.edu/aws/2008/ Arizona Winter School 2008: Special Functions and Transcendence The Southwest Center for Arithmetic Geometry http://swc.math.arizona.edu/aws/2008/08BeukersNotesDraft.pdf Arithmetic of values of E- and G-functions Lecture notes (draft) Frits Beukers 2008 https://en.wikipedia.org/wiki/E-function E-function https://www.encyclopediaofmath.org/index.php/E-function E-function Encyclopedia of Mathematics
385:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/24 10:50:23.15 Q5nVtg0b.net
>>348
おっちゃん、どうも、スレ主です。
>幾何や代数、表現論など他の分野と混じり気のないような純粋な解析に直観は禁物。
>スレ主はこれを心得ること。
>直観が通じそうでも或いはなさそうでも、場合によっては、議論に物凄いギャップがあることがある。
その考えは、私とは正反対だな
自分の直観を、レベルアップすべし
数学のハイレベルな理論と、自分の直観とが、一致するように
そうしないと、あなたはいつまで立っても論文一つ書けないだろう
386:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/24 11:06:47.45 Q5nVtg0b.net
>>353 補足
余談だが、素朴な直観が、「高度な科学理論」と合わないということは歴史的にもしばしばあった
だが、頭が軟らかい若い内に、きちんと学ぶと、「高度な数学理論」が当たり前に思えてくるものだ
まあ、そういう話は、物理に多い
古くは、地球が球だとか
天動説 VS 地動説
相対論 VS ニュートンの絶対(ユークリッド)空間論
量子力学 VS 古典(ニュートン)力学
まあ、数学でも
古代は、負数は認めないとか、虚数は存在しないとか
幾何は、ユークリッドが絶対だとかね
まあ、無限もカントールが認められない時代があったし
ヒルベルトは、全数学をユークリッド方式で公理化しようとしたが、不完全性定理が出た
連続体仮説は、他の公理から独立だが、これはあやしい仮説だという人もいるらしい
選択公理も、いろいろ議論のあるところだ
そんなこんないろいろあるが
きちんと勉強して、自分の直観を磨き鍛えることをしないと、だめだと思うよ
387:現代数学の系譜 雑談 古典ガロア理論も読む
18/02/24 11:24:19.95 Q5nVtg0b.net
>>347
>A_f(x)の定義は再度 >>343 に書いたので、きちんと参照せよ。
>というか、お前は既に A_f(x) の定義を知っていたはずである。
>なぜ今さら「知らないふり」をするのか理解に苦しむ。
それはすまんかった
A_f(x)の定義を検索したが、見つからなかったのでね
えーと、下記だったね(細かいが、A_f(x)とAf(x)の違いで検索ヒットしなかったかも)
あと、3スレ前で2017/12/22付けだし、もう一度定義を確認しておく意義はあったろう
スレ48 スレリンク(math板:404番)
404 名前:132人目の素数さん[sage] 投稿日:2017/12/22(金) 16:34:32.09 ID:bIg1uYPK
(抜粋)
[記法の整備 その1]
さて、せっかくディニ微分が出てきたので、ここからはディニ微分の「D記法」を拝借して
Af(x):= limsup[y→x]|(f(y)-f(x))/(y-x)|
とでも書くことにする。「A記法」とでも呼ぶべきか。このとき、集合 B_f は
B_f = { x∈R| Af(x) < +∞ }
と表現できることに注意する。もちろん、
R-B_f = { x∈R| Af(x) = +∞ }
という等式が成り立つ。
(引用終り)
以上