18/02/15 03:31:29.01 tNBf7zgk.net
>>824
θ = 36゚ とおくと
0 = sin(3θ)- sin(2θ)
= 3sinθ -4(sinθ)^3 -2 sinθ cosθ
= -sinθ +4 sinθ (cosθ)^2 -2 sinθ cosθ
= sinθ {4(cosθ)^2 -2cosθ -1},
sinθ≠0 だから
4(cosθ)^2 -2cosθ -1 = 0,
cosθ = (1+√5)/4,
sinθ = √{(5-√5)/8},
a = 2sin(2θ) = √{(5+√5)/2},
あるいは
0 = cos(3θ)+ cos(2θ)
= 4(cosθ)^3 -3cosθ + 2(cosθ)^2 -1
=(cosθ+1){4(cosθ)^2 -2cosθ -1),
cosθ≠-1 だから
4(cosθ)^2 -2cosθ -1 = 0,
以下同様